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ABSTRACT

Reinforcement learning from human feedback (RLHF) has been widely studied,
as a method for leveraging feedback from human evaluators to guide the learning
process. However, existing theoretical analyses typically assume that the human
feedback is generated by the ground-truth reward function. This may not be true in
practice, because the reward functions in human minds for providing feedback are
usually different from the ground-truth reward function, e.g., due to diverse per-
sonal experiences and inherent biases. Such inconsistencies could lead to undesir-
able outcomes when applying existing algorithms, particularly when considering
feedback from heterogeneous agents. Therefore, in this paper, we make the first
effort to investigate a more practical and general setting of RLHF, where feedback
could be generated by multiple agents with reward functions differing from the
ground truth. To address this challenge, we develop a new algorithm with novel
ideas for handling inconsistent multi-agent feedback, including a Steiner-Point-
based confidence set to exploit the benefits of multi-agent feedback and a new
weighted importance sampling method to manage complexity issues arising from
inconsistency. Our theoretical analysis develops new methods to demonstrate the
optimality of our algorithm. This result is the first of its kind to demonstrate the
fundamental impact and potential of inconsistent multi-agent feedback in RLHF.

1 INTRODUCTION

Reinforcement learning from human feedback (RLHF) (Casper et al.,2023) has been widely studied
as a significant advancement in the field of reinforcement learning, where a learner interacts with the
environment sequentially to achieve high cumulative reward. Traditional RL (Sutton,|2018;|Agarwal
et al.l 2019} [Vamvoudakis et al., 2021)) relies on absolute reward values generated by predefined
reward functions to guide the learner’s behavior. This limits its applicability in complex real-world
scenarios, where crafting reward functions is challenging or ambiguous, e.g., in robotics (Jain et al.,
2013), large language models (Ouyang et al.,2022), and image generation (Lee et al.,|[2023).

RLHF addresses this limitation by leveraging feedback from human evaluators to guide the learning
process. Various forms of human feedback have been studied. For example, existing works study
RL from comparison/ranking feedback or preference-based feedback, which involves (i) presenting
a human with two or multiple outcomes, (ii) allowing her to choose the preferred one, and (iii)
guiding the learning process towards better policies based on the received human feedback (Wang
et al., 2023; [Zhu et al., 2023; [Chakraborty et al., |2024; Ye et al., {2024} (Chen et al.| 2022 |Chatter;j1
et al.,|2021; Kaufmann et al., 2023} [Li et al., 2023} |Du et al., 2024). In this way, RLHF bridges the
gap between pure algorithmic optimization and the nuanced understanding of human judgment.

However, existing theoretical results on RLHF typically rely on the human feedback generated by the
ground-truth reward function R*(-). For example, the commonly used comparison model assumes
that: the human feedback is generated according to a Bernoulli distribution based on the value
of a link function o(R*(m1) — R*(79)), where R*(-) is assumed to be the ground-truth reward
function and {7; };—0,1 are two outcomes. If the Bradley-Terry-Luce model (Bradley & Terryl [1952)
is considered for the link function o (), then the human feedback is 7, > 7y (i.e., outcome 7 is
preferred to outcome 7o) with probability equal to exp (R*(71))/ [exp (R*(11)) + exp (R*(70))]-
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In a word, this type of human feedback is generated by the ground-truth reward function R*(+). Due
to page limits, we defer further discussion of related work to Appendix

Inconsistency in the Feedback: Feedback may not be consistent in practice, due to subjective
human judgment, inherent biases, and varying expertise levels (Tjuatja et al., 2024} |Yan et al.,[2024).
That is, human feedback in practice often suffers from inconsistency (see the details in Sec. [2.2).
For example, instead of being generated by R*(-), the real-world human feedback is often generated
based on o( RMM™an (1) — Rhuman(7)) Here, RMMa(.) is the reward function in the human mind,
and it is often different from the ground-truth reward function, i.e., RM™(.) % R*(-). Traditional
RLHEF theories, which often assume a ground-truth reward function R*(+), may not be applicable in
this more uncertain setting. Particularly, if assuming RM™"(.) = R*(-), the resulting policy could
overfit to certain subjective signals rather than generalizing effectively. Therefore, in this paper, we
address these unique challenges posed by inconsistent human feedback in the algorithm design and
theoretical analysis, and investigate the fundamental impact of this type of inconsistency in RLHF.

Multi-Agent Feedback: Existing theoretical analysis in RLHF leaves untapped potential for richer
and more diverse feedback sources. That is, in addition to human evaluators, feedback can be
sourced from AI models, data analyzers, and other automated tools (Lee et al.l 2024; |Guo et al.,
2024a). (We call these sources “agents”.) Heterogeneity among agents in understanding and inter-
pretation could create a wide spectrum of feedback quality, because of diverse personal experience
and varying expertise levels. Therefore, we investigate the power of feedback from multiple agents.

Due to multi-agent feedback, the inconsistency issue becomes even more pronounced. On the one
hand, discrepancies among agents complicate the learning process, as the policy must navigate and
reconcile conflicting signals. This requires us to explore strategies for harmonizing diverse inputs to
align more closely with ground-truth objectives. On the other hand, we should intuitively be able to
leverage multiple data streams of agent feedback simultaneously, such that individual biases can be
reduced. To address these challenges, in this work, we investigate the following open problem:

Whether multi-agent feedback with inconsistency in RLHF fundamentally helps the learning
process or exacerbates the situation?

To answer this, we theoretically characterize the fundamental impact and potential of inconsistent
multi-agent feedback. Specifically, we study online RLHF with inconsistent multi-agent feedback
under general function approximation. In addition to the well-known difficulties in RLHF and in an-
alyzing under general function approximation, the aforementioned properties of inconsistent multi-
agent feedback introduce significant new challenges in both algorithm design and regret analysis.

Sharp Regret Under Inconsistency: We formulate the inconsistency in the multi-agent feedback by
the cumulative discrepancy between the human preference model and the ground-truth preference
model (see Eq. (2)). Eq. () is general and does not require special structures in the inconsistency.
Nonetheless, we are able to provide sharp theoretical guarantees. Note that the regret considered
in Eq. is essentially the worst-case pseudo-regret, but over all possible human reward functions
satisfying the inconsistency model. As a result, our theoretical regret guarantee not only works for
the agents providing feedback during the online learning process, but also works for any newly-
incoming inconsistent agent, as long as her reward function satisfies the inconsistency model.

New Algorithm Design and Analytical Ideas: From a high-level point of view, the steps of our new
algorithm include: (i) dynamically searching for the confidence center based on the multi-agent
feedback; (ii) constructing a confidence set based on step i and an important subset of inconsistent
feedback; (iii) reforming the confidence set in step ii to capture ground-truth comparison with high
probability; and (iv) constructing a high confidence policy set to circumvent the absolute reward
uncertainty. In this way, the optimal policy can be approximately found with high probability. The
new ideas that have been developed are described below.

New Idea I: Steiner-Point-Based Confidence Center for Leveraging Multi-Agent Feedback.
Since the feedback is inconsistent, a natural idea would be to use the feedback of each agent to
estimate their reward models, and then search for the optimal policy jointly. However, this will
lose the fundamental power of multi-feedback, i.e., the resulting performance does not improve
with the number of agents. Thus, we should estimate the confidence center by utilizing multi-
feedback simultaneously. However, the traditional complexity analysis in RL does not apply, since
the confidence center may be outside of the agent reward function space and arbitrarily dynamic
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Figure 1: Feedback comparison for tradition RLHF case and our case: in our case, the feedback is
based on heterogeneous reward functions 127", which could be different from the ground truth 12}

due to inconsistency (see Fig.[Tland Fig.[2). To address this new difficulty, we non-trivially modify
Steiner-Point Approximation from theoretical physics and combinatorial geometry (Brazil et al.,
2014), which requires fundamentally new analytical methods in RL for a sub-linear regret.

New Idea II: Sub-Importance Sampling for Reducing Functional Complexity. Due to the nature
of multi-agent feedback and general function approximation, the traditional sample-based complex-
ity would result in a final regret increasing linearly in time horizon K. To address this new difficulty,
we design a parameterized approximation method for sub-importance sampling under Fermat analy-
sis, such that the functional complexity is reduced as it is based on only a subset of sensitive samples,
where the new layer of complexity can be fundamentally reduced and captured in the analysis.

New Idea III: Scaled Confidence-Based Weights for Reducing Biases and Optimism-in-the-
Face-of-Policy-Uncertainty (OFPU). Existing ideas for addressing biases in the sampling feedback
are to add weights to the action selection step. Directly applying this does not work due to the het-
erogeneous feedback in our case. To resolve this, we design a fundamentally different scaled weight
directly on the policy, such that a greedy decision under policy uncertainty in our case still guaran-
tees optimality. Particularly, due to the inconsistent discrepancy, the estimated reward function will
always contain a layer of inconsistency. Thus, a V-value function is not well-defined. Instead, we
construct the policy set directly based on the new bonus terms, i.e., in the face of policy uncertainty.

2 PROBLEM FORMULATION

In this section, we introduce the online RLHF setting that we study, especially the inconsistent multi-
agent feedback considered in this paper, as well as notions for general function approximation.

2.1 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK (RLHF)

We investigate RLHF in episodic Markov decision processes (MDPs), where an online learner inter-
acts with the environment in K episodes. It is typically modelled by (H, S, A, P), where H denotes
the number of steps in each episode; S and A denote the state space and action space, respectively;
andP: S x S x A — [0, 1] denotes the unknown transition kemelﬂ At each step h of an episode k,
based on the current state s, 5, the online learner takes an action ay, ;. Then, the environment transits
to the next state sy 1,41, which is drawn according to the transition probability P(-|sg n, @ p)-

'As typically assumed, we let the initial state in each episode be fixed, i.e., sx.1 = s1 € S. This can be
generalized to the case where s, 1 is sampled from a fixed distribution A, for each episode k.
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In RLHF, human feedback is typically used to guide the learning process. One conventional human
feedback in each episode is a comparison of two trajectories 7 £ (Sk.1,Qk1,-- -, Sk.H, 0k i) and
0 2 (50,1,Q0,1, - - -, So,H, a0, i) (Wang et al.| [2023; |Zhu et al.l 2023; Du et al., [2024; |Zhan et al.,
2024])). In this case, the feedback is fr, = 1, i.e., trajectory 7y is preferred to trajectory 7y (denoted by
Ti > To), with probability o (R*(1;) — R*(70)), where R*(-) is an unknown ground-truth reward
function and o (+) is a link function. Note that this human feedback f}, is generated by a comparison
based on the ground-truth reward function R*(-). This may not be true in practice, due to subjective
human judgment, varying expertise levels, diverse personal experience, inherent biases, etc.

2.2 INCONSISTENT MULTI-AGENT FEEDBACK

Therefore, in this paper, we extend aforementioned traditional RLHF to a more practical and general
online setting, i.e., RLHF with inconsistent multi-agent feedback, formalized as follows.

Multi-Agent Feedback: We consider feedback that could be generated by multiple agents, e.g., hu-
mans (Chakraborty et al.|[2024)), Al models (Lee et al.,[2024)), and data analyzers (Guo et al., 2024a).
Specifically, at the end of each episode k, there are M agents providing comparison feedback f;",
where m = 1,..., M is the index of the agent. This type of multi-agent feedback has received
attention in empirical studies recently. However, to our knowledge, a theoretical understanding of
the fundamental impact of (inconsistent) multi-agent feedback is still an open problem.

Inconsistency in the feedback: We consider the human feedback that could include inconsistency,
i.e., the human feedback is not generated based on the ground-truth reward function R*(-). Specifi-
cally, the feedback f;”* from each agent m is a Bernoulli random variable with probabilit

P(fit =1) &£ P™ (1 = 10) = 0 (R™ (%) — R™(70)),, (1)
where R™ () : {7} — [0,1] is the unknown reward function of agent m, {7} is the state-action
trajectory space with slight abuse of notation, 7 £ (0,1,00,15 - - - S0,H, Qo,zr) is a fixed trajectory

of state-action pairs, and 7, is the trajectory visited in episode k. We highlight two layers of incon-

sistency here: (i) the reward function R™(-) in the mind of each agent m could be different from

that in the mind of others, and (ii) {112"”(-)}71\,/{:1 could be different from the ground-truth reward

function R*(-). This is why we call the multi-agent feedback “inconsistent”. More specifically, such
inconsistency among R'™’s and R* can be formulated by the following inconsistency model:

WAX 1y Sy [0 (R (70) = B (7)) = 0 (R™(74) = R™ ()| < €, ¥m € [M]. )

Note that the inconsistency model in Eq. is general. It only assumes an upper bound on the
cumulative worst-case discrepancy between comparisons (i.e., not the absolute values) based on
the reward function R™(-) of each agent and the ground-truth reward function R*(-). Thus, the
discrepancy of each agent could be different, and hence R™(-) could be different from each other.
Moreover, Eq. (2) does not require special structures in the inconsistency. Further, if £ = 0, our
setting reduces to the setting without inconsistency, where all agents provide feedback based on the
ground-truth reward function. In addition, if £ = 0 and M = 1, our setting reduces to the traditional
setting, where one human provides feedback generated by the ground-truth function.

Example 1 (Inconsistent multi-agent feedback in autonomous driving): When evaluating which
maneuver or course is the best during the training of a vehicle, different agents may prioritize dif-
ferent aspects based on her subjective habits, such as safety, timeliness, fuel efficiency, and comfort.
This leads to inconsistent opinions on the best course of actions and locations. For instance, assum-
ing course 77 is safer and more comfortable, while course 7 is faster and more direct. Consider
the case of two agents. Agent m = 1 might emphasize safety and comfort above all. Thus,
she chooses a slower, but more cautious and comfort course (which turns out to be bad), e.g.,
RY(7) — RY(19) = 0.8. Agent m = 2 may prioritize timely arrival. Thus she chooses a faster
and more direct path, even if it involves greater risk, e.g., R?(7;) — R%(79) = —0.2. However, due
to more complicated considerations, such as minimizing traffic disruptions or environmental impact,
the ground-truth reward function may suggest that R*(71) — R*(79) = 0.4. Such inconsistency in-
troduces variability in the data, which significantly challenges the RL process.

2With simple modification, our results can be applied to other settings, e.g., the comparison is based on each
state-action pair, preference-based model, and ranking feedback.
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2.3 PERFORMANCE METRIC - REGRET UNDER INCONSISTENCY

We evaluate the performance of the online RLHF algorithm by the regret under inconsistency, i.e.,

Reg(K) = maxeq. g X [V*(70) = V™ ()], 3)
where V*(r9) = max,E[c(R*(7™)— R*(7))] is the optimal V-value, V™ (ry) =
E[o(R*(7™) — R*(70))], and 7™ denotes the trajectory after implementing policy 7. Note that
(i) The regret in Eq. is under the worst-case inconsistent feedback satisfying Eq. (2), i.e., the
“max” part in Eq. (3). As a result, our solution works not only for the A/ agents providing feedback
for the online learning process, but also for any newly-coming agent, as long as the reward function
R(-) in her mind satisfies Eq. . (ii) V-value in Eq. is based on the comparison, since we could
only learn the reward up to a constant, due to the fact that the agent feedback is only a comparison.
(iii) If the regret in Eq. is evaluated based on the unknown R™(-), our results still hold, with
only a constant factor difference. (iii) Achieving a low regret under such inconsistency in RLHF
requires novel ideas in both the algorithm design and regret analysis. To the best of our knowledge,
we are the first to study such fundamental impact and potential of inconsistent multi-agent feedback
in RLHF from a theoretical perspective.

2.4 GENERAL FUNCTION APPROXIMATION

We consider general function approximation. Below, we provide the definitions of the standard
covering number and eluder dimension for capturing the complexity of a function space.

Definition 1. (e-covering number) Let (F, || -||) be a metric space, where F is the function class and
I - || is the norm used to measure distances between functions. A set of functions {f1,..., fn} C F
is called an e-covering set if for every f € F, there exists some fp, s.t., the distance || f — f,|| < e.
The e-covering number N'(F, || - ||, €) is the minimum number N of functions in an e-covering set.

The e-covering number N (F, || - ||, €) captures how “complex” the function class F is, i.e., how
many different functions are required to approximate any function in the class to within e accuracy.

Definition 2. (Eluder dimension) Let F be a class of real-valued functions over a domain X. For a
set of previously observed points Xy = {x1,x2,...,xn} C X, define the following:

- A point x € X is said to be e-dependent of X with respect to the function class F if, for all pairs of

functions f1, fo € F satisfying \/Zf:[:l (f1 (zn) — fo (zn))* < € it holds that | f1(x) — fa(x)] <
€. Further, x is e-independent of X with respect to F if x is not e-dependent on Xy.

- The eluder dimension dimpg (F, €) is the largest number of points in set Xy such that, for some
€' > €, each point x,, (n € [N)) is e-independent of its previous points {x1,Za, ..., Tn_1}.

The e-dependency shows that the new point & cannot be used to significantly distinguish between
functions in F that agree on the previous data points. The eluder dimension measures how dependent
or entangled the predictions of different functions in F are across the state or state-action space.

3 ALGORITHM DESIGN

In this section, we present our new RLHF algorithm for solving the problem defined in Sec.[2] We
focus on introducing the three main new ideas for addressing inconsistent multi-agent feedback.

3.1 RLHF WITH INCONSISTENT MULTI-AGENT FEEDBACK

The algorithm is formally provided in Algorithm[I] From a high level perspective, in each episode,
our algorithm first executes a sub-importance sampling to guarantee the functional complexity not
increase linearly with the time horizon (line 3). Next, by applying a Steiner point method, we
construct the confidence center that could be outside of the reward space (see Fig. [I|and line 4) and
the corresponding confidence set for the reward functions (line 5). Then, based on the trajectories
sampled under the Steiner point method, we reform the confidence center and confidence set for the
transition kernel (line 7 and line 8). Finally, based on the bonus terms for both reward and transition,
we update the policy greedily in each episode (line 10). Below, we focus on introducing these
four main new ideas in our algorithm design to enable online RLHF with inconsistent multi-agent
feedback. Define I'y, £ {7, },c1) and o(7 | R) £ o(R(7) — R(70)).
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Algorithm 1 RLHF with Inconsistent Multi-Agent Feedback (RLHF-IMAF)

1: Initialization: Set St = Bp = 8log 2KN (Fr,1/K, || - ||oo) /9)

2: for episode k =1: K do

3:  >>D> New ldea Il

4:  Add 1/p, copies of each trajectory 7 € I'y_q into I"},_, with probability p., where p, =

min {p €R|p>min {1, Trra(r) - T2In(AN (R, /72 - /\6/(|F|))/6)/52} 1/pe Z}

> > > New Ideas I and II: R

Update the Steiner-point-based reward confidence center Ry, according to Eq.
Update the confidence set R, for the reward function according to Eq. (12)
Update the bonus term for the reward function exploration as follows,

AN

b2 (1) = max |o (7 |R) — o (7’ | ]A%k) ’/ A+ ek—1 (otr 1) —o(r1Re))" - 4)
k RERy, €[k—1], max{l,At(6)/|U(T\R)—U(T|Rt)|}7

TGFm_l

9: > Newldeas I and IlI:
10:  Update the Steiner-point-based transition confidence center according to Eq. (T4)
11:  Update the confidence set for the transition kernel according to Eq. (T3]
12:  Update the bonus term for the transition kernel exploration as follows,

(P’(- | s,a) — Pul- | s,a)) V(s,a)

(&)

by (1) = max

Vey . 5 1/2
(s,a)€T p'epy, A S reos (P = P)(“Is¢,n-04,n): Ve, n)
telk— A
Tg[rm,]; max{1,AF (6)/[([P" =P ([se.nae.n ) Ven) |}

13: > > New Idea IlI:

14:  Execute the following policy for episode k according to Eq.
15:  Collect the trajectory 74, and preference f;" from all agents.

16: end for

As discussed in the introduction, since it is highly unclear whether multi-agent feedback with in-
consistency fundamentally helps the learning or exacerbates the situation, the difficulty is how to
leverage the potential and circumvent the biased in such feedback.

New Idea I: Steiner-Point-Based Confidence Center for Leveraging Multi-Agent Feedback (Il-
lustrated in Fig. 2b). Applying existing ideas for function estimation does not work in our case,
due to the inconsistency and heterogeneity in the feedback. This undertanding is fundamentally im-
portant for the later algorithm design and theoretical analysis, thus let us elaborate more as follows.

Specifically, to estimate the reward function, a natural but naive way would be to apply the least-
squares method to the feedback from each agent, i.e.,

Rm = argming g Sory (0 (R(1) — R (10)) — f™)?, (6)

where ]:?ZL denotes the estimated reward function of agent m and R denotes the agent re-
ward function space. Note that this does not utilize the mutual information [ (f™i;f™7) =
Dk, (P(fw £ || Pem: @ Pymj ) among the agents, and thus the resulting regret would not improve
when more agents are providing feedback. For example, in Fig. [T} the useful overlaps between
feedback generated based on different 12}*’s are not effectively utilized.

To address this, intuitively, if the reward functions in all human minds were identical, we
could consider them jointly. Then, according to the chain rule of mutual information, i.e.,

T(fme, . fmi-r fme) = Z;;ll I(fmayfmi|fme . f™i-1), by considering the estimate

R = argming . 5:11 2%21 (0 (R'(1¢) — R'(10)) — fi™)?, N

the performance would improve with the number of agents //. Compared to the estimate I:{km above,
the difference here is to consider the feedback from all M agents jointly, i.e., shown by the sum over

all m and the estimate I-Al’ﬁC is no longer indexed by (or designed for) each agent m separately.
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(a) New Idea II: Sub-importance (b) New Idea I Stelnfzr point (c) New Idea III: Scaled weighting
sampling, where solid and dash ar- Method, where the mapping from .4 OFPU, where mapping from
rows illustrates the choice of histor- simpleh average I to the Fermat Jower function space to upper pol-
ical trajectories I'y, from I'y, point Ry, illustrates Steinerization  icy space illustrates such transfer

Figure 2: Illustration of new ideas in our algorithm design

However, the estimate R; still does not work, because the reward functions of the agents are actually
not identical due to the inconsistency in the feedback (see Eq. (2)). Then, one may conclude that
when there exists such inconsistency, multi-agent feedback does not help any more. For example, if
the agents are highly biased and do not agree with each other, multiple copies of feedback from these
agents do not tell us anything about the ground truth. Thus, an open fundamental question remains:
whether multi-agent feedback with inconsistency actually helps or exacerbates the situation?

With a deeper thought experiment, we could notice that, since KL divergence Dkr, (P;(f)||P;(f)) =

> Pi(f)log ?E;% is convex in the pair (P;, P;), by carefully constructing the confidence center
based on the multi-agent feedback, we could still push the estimation of the reward function closer

to the ground truth. Then, the non-trivial question is where such a confidence center is.

Motivated by theoretical physics and combinatorial geometry, we provide a novel idea to answer this
question based on the Steiner point (Gilbert & Pollak, [1968} Brazil et al., 2014). Specifically, the
Steiner point is a generalization of the Fermat—Torricelli point. From a geometrical point of view,
it is defined to be a point with the minimum total distance to all input points. The effectiveness of
Steiner point comes from the fact that it could be a new point added to solve a problem, i.e., the
solution set could be expanded from the original constrained set based on inputs to a larger set with
more flexibility. In our case, when restricting ourselves to the ill-structured agent reward function
space, the solution may get stuck due to the inconsistency. After enlarging the space, we could
leverage the convexity of KL divergence mentioned above, and hence get closer to the ground truth.

However, the difficulty in applying Steiner point to our problem is that the optimization, i.e., the
estimation, for the reward function is based on the randomness of the sampled data, and thus the data
covering complexity would be exponential. Despite the worse-case complexity, a polynomial-sized
approximate kernelization scheme is still possible. For example, for any o > 0, the connected vertex
covering algorithm achieves a polynomial-sized kernel with only a « estimation error (Lokshtanov
et al., 2017). Therefore, to leverage the potential of multi-agent feedback under inconsistency, we
use the heterogeneous feedback joint in an expanded reward function space as follow (Fig. [2b):

S M k—1 ) (o(rIR)) 1)
Rk = arg min R'€Rp_1N Zm:l t=1 Zrel—‘t‘t,l Hl‘dX{l,At(9)/|G(T\R)—U(T\R,,)|}7
{R/|minReR ”R/_RHRTVSQ}
®)

where the objective function is the Steiner point target function with domain in the expanded space
Ra = {R' | minger |[R — R|rrv < a}, the reward total variance (RTV, with a slight abuse of
notation) is defined to be || - [|rry = max ;K o Zle [|R (1) — R'(m0)| — |R(7%) — R(70)]l,
2
. . t—1 A
Ry, is defined in Eq. , AR@G) =2 9\/)\+Zi_1 Dty (O(T | R) —o(T | Ri)) , and

| TP 2 ', — I',_;. Note that there is a trade-off related to the tunable parameter o, e.g., with
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a larger «, the optimal solution is getting closer to the ground-truth, while the kernel size will be
larger, and vice versa.

New Idea II: Sub-Importance Sampling for Reducing Functional Complexity (Illustrated
in Fig. 2a). Conventionally, in each episode k, based on our new Idea I and the replay buffer
{76 f)} (t,m)ep—1] x [ar) that contains all historical data, we can construct the confidence set,

R, = {R’ €RaNRyy | TF} (a (R'(r) — R'(10)) — 0 (zizk(n) . Rk(m)))Q < BR} ,(9)

such that the ground-truth reward function R*(+) is contained with high probability, by choosing the
parameter 3% correctly. After collecting more and more sampling data by repeating this procedure
along all K episodes, the confidence set will be pushed to navigate the ground truth R*(-), according
to the law of large numbers. As a result, a greedy policy based on the Q-value function constructed
on the reward function in the confidence set will be nearly optimal. To encourage such greedy
exploration, a bonus term by, 5, is usually designed to be the width of the confidence set R, ie.,
bin = w(R},) £ maxp, ryer, |0 (R1(T)) — o (Ra(7))|, such that Q. 11 (s, a) is guaranteed to
be an overestimate of the true Q value 7(-,-) + > g P (s" | -,-) Vi ny1 (s") with high probability,
where the V-value function is Vj, j,4+1(-) = maxgea Qn+1(-, a).

However, in doing so in our case, two new issues will arise. First, since the confidence set Ry above
relies on all historical data, i.e., represented by the sum over all episodes 1,...,k — 1, the bonus
term by, ;, will also rely on all these data. Then, the complexity could increase linearly with time
horizon T' = K H. One idea to address this is importance sampling, i.e., only include important
state-action pairs in the estimation (Langberg & Schulman, [2010; Wang et al., [2020). However, the
Steiner-point-based confidence center in Eq. (8) relies on R _1, and hence will be affected by such
sampling. To resolve this new issue, we develop a novel “sub-importance sampling”, with the new
development mainly on how to determine the importance of the historical data.

Specifically, we first introduce an important notion in such sampling. For a given set of trajectories
I' C {7} and a function class R, for each 7 € T", the A-sensitivity of 7 with respect to I and R is

(RmomeT»22A/u+a)(R(T)—vR%T)YZ/EZWEF(f“Tq‘—fy(79)2-
(10

TrrA(T) = MaXp ReR,Y or

Sensitivity measures the importance of each trajectory 7 in I with respect to the function pairs

R, R’ € R, such that 7 contributes the most to > _, .- (R(7") — R'(7’ ))?. Thus, the trade-off is
that, intuitively with larger «, Steiner-point-based confidence center is better constructed, but the
bonus complexity will be larger. To handle this new trade-off, we filter the historical samples, i.e.,

[ ={r €T | 7 € C(0,1/(8/AT/3)),5upp prerrm,_, [R(T) = R(7)| < 1/(8\/4T/5)},
Y

where Ry, = {R € C(RNRi_1,1/(8v/4T/d)) | ||Rr — Ri|| < 1/(8y/4T/5)} is a confidence-
center-based shifted covering set. In this way, we only consider the samples from a set guaranteeing
sufficient covers (Fig.[2a). Based on this and the constructed confidence center, the confidence set is

_Irenr g (o (7)o (rIFr))" R
o= {R € Ra NRit [ AT 2t 2rets i ke ot oty =0 f - (12

Second, constructing R, in Idea II requires the reward function of each state-action pair, such that
the value function at each step h can be calculated. Such a reward value is not available in RLHF
settings. Tackling this problem is relatively easier (Ayoub et al.,[2020;[Ye et al.,2023). We define the

loss function as Ly (Py,Po) = S0 SO ((Py (- | sens ann) — Pa (- | sensaen) s Vin))®. Next,
we construct the high confidence set for transition P:
BF = {IP” | Ly (]P”,Pk) < 5P}. (13)

The exploration bonus bI,E(S, a, V) for the transition estimation then measures the uncertainty of 3},
ie, bl (s,a,V) = maxp, p,cpr (P1 — P2) V(s,a). Suppose Vinax k,s,0 = arg maxy ¢y, by, (s, a, V),
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then we use Vinax,t,s,.5.:,a...; @ the online target for the history sample (s¢,5, a¢,n, 5¢,n41). With a
slight abuse of notation, we use b (s, a) = maxy ey b (s, a, V) to denote the maximum uncertainty
for a given state-action pair (s, a). Define the bonus term b} (7) = > (s.a)er bPk(S, ).

New Idea III: Scaled Confidence-Based Weights for Reducing Biases and Optimism-in-the-
Face-of-Policy-Uncertainty (Illustrated in Fig. 2c). Based on Idea I and Idea II, we are ready to

construct optimistic Q-Value function. However, when the ground-truth reward function is not in
the candidate set, an additional non-negligible regret will be incurred, e.g., simply applying online
ridge regression over all collected samples could result in a regret that grows linearly in a constant
error times O( VT ) (He et al.,[2022). One existing solution is to assign a weight wy, to each selected
action. The key idea is to assign a small weight to it to avoid the potentially large sub-regret, e.g.,

k—1 Z (<Pl("Sf,,h,,at,h,)»vf,‘h,>7Vk,h,(3f,,h,+l))2

t=1 TE}Ft[\;f]lv max{1,AF (0)/[(P'(-[s¢,n,ae,n)—Pr(:|5t,n,G,1), Ve n)
S

b, = arg minp,cp, | (14)

}7

. 2
where A}(0) = 9\/)\ + Y D ey <<P/ (- | sinsain) = P (- | 8i,p5@in) s Vi,h>) is the
weight to normalize the traditional regression error for stability. Then, the confidence set will be

(<P,("St,h;at,h)*PkA("St,h7at7h)7‘/t,h>)2
max{l,Af’(e)/‘ ([P" =Py (:|st,n,00.1),Vi,n)

Pr={P €Pry | A+ > >
te[k—1] 7€l¢—1,
he[H]

P
T <p7r (15

However, this idea is not directly applicable in our case with inconsistent multi-agent feedback,
because simply adding weights to the action does not help to explore the ground truth that is an
outlier. To address this new issue, we choose the weight as a scaled inverse exploration confidence,

Wi = max {1,0\/)\ + Zf;ll (R(Tt) - Rk(n))2/ ’R(Tk) - Rk(’f’k)’} ) (16)

where 6 > 0 is a tunable parameter. Moreover, since the absolute reward for each state-action pair

is not available in RLHF, we cannot get an optimistic Q-Value function. Instead, we construct the
optimistic policy set. With the confidence set and bonus terms, we construct the following set Sj:

Se={m B m |7 (770 | R) +0R (r,70) + 07| 2 0,vmo e T}, (17)

where II is a set containing all history-dependent policies. Intuitively, Si consists of policies such
that no other policy outperforms it. Finally, we choose a policy that maximizes uncertainty,

T = arg max ET~(Pk,rr) (be (1) + /BFbE (7)) . (1)

{W\E,N(pw) [U(T\Rk)+b§(r)+b,f(r)]zo}

4 THEORETICAL ANALYSIS

In this section, we focus on discussing about new difficulties in the regret analysis of our setting
with inconsistent multi-agent feedback. Due to page limits, please see Appendix |B|for details.

Theorem 1. Let o € (0,8, Ci(k,&) = 2(£2+2k+3n(2/6)), BE >
0] <(ln (HNk (€, ) /5) + Esup,p, BF + (sup, BF) K + sup, B /K Cl(k,ﬁ))m), and

- 9 1/2
lf >0 (ln (HNxk(€,@)/d) + Esupy, B+ (SuPt BtR) K + sup, Bf* KCl(k,f)) Jor all
k € [K)], then with probability 1 — 20, the regret of RLHF-IMAF is upper-bounded as follows,

RegRHAFMAF 10y < O ( %ln (Nk(€6,)) dimg (R, €¢/K) +§(dimE’(Ra€/K))> - (19

Our regret analysis reveals the following: (i) The regret decreases with M, indicating that having
more feedback sources is generally beneficial, even in the presence of inconsistency. This highlights
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the utility of multi-agent feedback in improving performance. (ii) However, the regret also includes
a term dependent on £ that does not decrease with M. This indicates that while increasing M can
mitigate some effects of inconsistency, if the feedback quality is consistently poor (i.e., high &), part
of the overall regret remains significant regardless of M. Thus, the benefit of additional feedback is
limited by its quality. (iii) The regret depends on «, i.e., the Steiner point constant. Thus, there is a
fundamental trade-off between complexity and the regret performance.

Proof Sketch: Due to the three new ideas in our algorithm design, there are three main steps.

First, we need to show the impact of inconsistency resolved by constructing a Steiner-point-based
confidence center. Specifically, the bonus parameter 35 depends on N (€, ) £ N (R, €, ||  [|oo) -
N (8o x Aq, €| - ||loo), which captures the covering over the new function space with regard to the
a-Steiner points. Thus, with high probability at least 1 — ¢, where 0 € (0, 1), we have R*(-) € Ry,.
Note that S,, and A, represents the Steiner-point-based state space and action space, respectively,
and they are constructed based on the aforementioned construction for the Steiner-point-based con-
fidence set, as well as the transition kernel. See Appendix [B.T]for details.

Second, we need to derive the sub-regret based on the gap incurred by sub-importance sampling and
the resulting bonus terms. To capture this, we extend the idea in|Wang et al.|(2020) (see discussions
in Appendix D) to capture our new sub-importance sampling method, i.e., we show that —¢&;, <
Vii(to | P) = Via(mo | P*) < 24/BPbE (s,a) + &. This captures the gap due to the error in
sub-importance sampling for the comparison feedback. See Appendix [B.2]for details.

Third, since we design scaled confidence-based weights for reducing biased in each agent feedback,
we need to derive the final regret based on a deforming indicator function and the threshold-based
bonus values (see discussions in Appendix [E). Specifically, we decompose the regret as follows,

(o(1 | R) £ o(R(7) — R(9)) with slight abuse of notation)

K

RogRUHF-IMAF () — Z (]ET*N(I@,]M*)U (7" | R) — IETW(MM)J (% | R))
k=1
+ Y0t (Erenpeanyo (77 | RY) = Erp(r im0 (7 | BY))

=Y (B, < | R) = E,, (5m)7 (% | B))
+ Zf 1 ( T*~ ]P’k T ( * | R*) TkN(I@)k,ﬂ'k)a(Tk | R*))
~ Y (ET*N(@k,ﬂ*)U (7" [ R) =B, (8.m)7 (k| R)) i)

Then, we bound the first term, second and third terms, fourth and fifth terms on the right-hand side
one-by-one. The first term captures the gap due to the Steiner point in estimating the confidence
center. The second and third terms capture the gap due to scaled confidence-based weights for
optimistic exploration. The fourth and fifth terms capture the gap due to sub-importance sampling
of the trajectories. See Appendix [B.3|for details. After bounding these terms by the corresponding
bonus terms and eluder analysis, the final regret will then follow. O

5 CONCLUSION

This paper studies RLHF with inconsistent multi-agent feedback under general function approxima-
tion from a theoretical point of view. In summary, the inconsistency in agent/human feedback can
result in suboptimal outcomes, especially when feedback comes from diverse agents. To address this
gap, this paper presents the first effort to explore a more realistic setting of RLHF, where feedback
is provided by multiple agents with differing reward functions. We propose a novel algorithm de-
signed to manage inconsistent multi-agent feedback, introducing a Steiner-Point-based confidence
set to harness the advantages of multiple sources of feedback and a weighted importance sampling
technique to handle the complexity of inconsistency. Our theoretical contributions demonstrate the
optimality of this approach and highlight, for the first time, the significant implications and potential
of inconsistent multi-agent feedback in RLHF. Since this work only study the case with one single
ground-truth reward function, it would be interesting to extend our results to the case with multiple
(personalized) ground-truth to handle the preference of users. It would also be important to consider
more general form of inconsistency.

10
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A MORE RELATED WORK

Reinforcement Learning with Human Feedback (RLHF) has gained substantial attention as an ap-
proach to align machine learning models with human values and preferences. Early works, such
as|Knox & Stone| (201 1))’s exploration of incorporating human feedback into reinforcement learning
agents, established foundational methods for improving learning efficiency through interactive feed-
back mechanisms. A significant breakthrough was achieved by (Christiano et al.,|2017), who intro-
duced techniques for scaling human feedback to deep reinforcement learning, enabling the training
of more complex models through reward learning. Further developments included studies by |Sti-
ennon et al.|(2020), who demonstrated how RLHF could be applied to tasks like summarization,
optimizing model outputs through iterative human feedback loops.

In recent years, advancements have focused on the robustness and scalability of RLHF systems. For
instance/Hwang et al.| (2023)) proposed sequential preference ranking to enhance feedback efficiency
in complex tasks. Concurrently/Casper et al.| (2023) identified open challenges in RLHF, such as
balancing the trade-offs between automation and human involvement, and ensuring scalability to
real-world applications. Additionally/Kaufmann et al.|(2023) surveyed approaches for learning re-
ward models from human feedback, emphasizing the shift towards robust policy training over direct
reward optimization. Emerging research also explores Al-assisted feedback mechanisms to aug-
ment human inputs/Lee et al.| (2023) demonstrated that integrating Al feedback with RLHF could
maintain model alignment with human values while improving efficiency. |Liu| (2023)’s work on
transforming human interactions via RLHF highlighted the potential for this methodology in ethical
Al and social robotics. More recently, RLHF has also been extensively studied, e.g., in/Wang et al.
(2023); Zhu et al.| (2023)); [Chakraborty et al.| (2024)); |Ye et al.|(2024); |Chen et al.| (2022); |Chatter;ji
et al.[|(2021)); Kaufmann et al.|(2023)); L1 et al.| (2023)); |Du et al.| (2024), and references therein.

Overall, RLHF continues to evolve as a pivotal framework for creating systems that reflect human
intent, fostering advancements in areas such as robotics, natural language processing, and ethical
Al. Further research into scalable architectures, enhanced feedback modalities, and cross-domain
applications promises to extend its impact across Al-driven industries.

Research has also explored broader preference structures beyond the reward-based paradigm, e.g.,
in Munos et al.| (2023); Rosset et al.| (2024); |Swamy et al.| (2024); Ye et al.| (2024), and techniques
for post-processing models (Lin et al.| 2023} |Zheng et al., [2024). Direct preference learning has
notably advanced RLHF, particularly in the post-training of open-source models. Following these
advancements, recent studies, e.g., (Guo et al., [2024b; [Liu et al., [2024; [Meng et al., 2024; Tajwar
et al.| [2024; Xie et al.|[2024)), have demonstrated the effectiveness of on-policy sampling and online
exploration in improving direct preference learning. In particular, online iterative DPO (Xiong et al.,
2024} | Xu et al., 2023) and its variants, e.g., (Chen et al.| (2024); Rosset et al.| (2024), have achieved
state-of-the-art results. Moreover, robust learning is also one related direction studying the corrup-
tion/imperfection in the feedback, e.g., inHe et al.|(2022)); Ye et al.|(2023)); Wei et al.| (2022); Wang
et al.| (2020); Kong et al.[(2021);|Yan et al.| (2024), and references therein.

B PROOF FOR THEOREM

Our regret proof involves three important steps, which are related to the three new ideas in our
algorithm design, detailed as follows. First, since in our new Idea I in the algorithm design we
construct the confidence set based on the Steiner point technique, in Step I below (Appendix [B.T),
we derive the confidence radius and construct the high-probability event that are related to the impact
of Steiner point in historical sample sets and bonus term values. Second, since in our new Idea II
in the algorithm design we design a sub-importance sampling method for reducing the complexity
in the function space, in Step II below (Appendix [B.2)), we derive the sub-regret based on the gap
incurred by such sub-importance sampling and the resulting bonus terms. Third, since in our new
Idea III in the algorithm design we design scaled confidence-based weights for reducing biased in
each agent feedback, in Step III below (Appendix [B.3), based on Step I and Step II, we derive the
final regret based on a deforming indicator function and the threshold-based bonus values.
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B.1 STEPI: STEINER-POINT-BASED HIGH PROBABILITY EVENTS

In Step I, we first derive the confidence radius for both the reward confidence set Ry, and the transi-
tion confidence set P, in Algorithmm Because the absolute reward value is unavailable, we cannot
construct high probability events for the V-value function any more. However, based on these, we
can still construct a high probability event directly for the uncertain policies.

B.1.1 HIGH PROBABILITY EVENT FOR THE REWARD FUNCTION

Lemma 1. Forall (k) € [K], ifforall k > 0, we let B, p+1 = 0 and fromh = H to h = 1,

) 1/2
Bl > (12)\ +12In (2HNk (e, ) /8) + 12vE sup Bl + 12 (5 sup ﬂtR'y) K + 60sup Bty KCl(k,§)> ,
t<k t ¢
(21)
where  Ni(e,a) = N(R.e| o) = N(SaxAa,6 - lloc) and Ci(k,§) =

2 (£2 4 2k + 31In(2/6)), then with high probability at least 1 — 6, where § € (0,1), we
have R*(-) € Ry.

Proof. To prove R*(:) € Ry, with probability at least 1 — J, we prove that with probability at least
1 — 4, we have for all k£ € [K],

kol (¢ 1R = (7] Rk))Q )
A+§T€§l maX{LAt(G)/‘U(T R —o(r | &) } < gH, (22)

by mathematical induction.
Base case: First, we have that Eq. trivially holds for episode k = 1.

Hypothesis: Then, for episode k£ > 1, we assume that Eq. holds for all episode ¢ < k —1, which
means that for all episodes ¢ € [k — 1],

i-1 ( (| R*) —O’(T|Rt))
A+ Z . < ph. (23)
S max {LA0)/ |o(r | BY) — o(r | R)|}
Induction: Thus, for episode k, we let R;’? be a e-covering set of Ry, under the || - [ norm.
Then, we construct Ry~ = Ry7 @ BB as a (1+ B7) e-covering set of Ry under the

| - |lo norm, where B;? is the bonus function space which can be relaxed under our sub-
importance sampling idea (i.e., represented by the sum over 7 € I';;_1), and note that the cov-

ering set depends on the link function o. Thus, to compare with R*, let Ry € ’Rk so that
|lo(Ri (-) = Rk (10)) — o(R; () — R*(TO))Hoc < &= (1+ B)e. Then, by letting

k—1

Romagminy. 3 (RO - Rn) - olRlr) - R(w))’. @
[ — 7€l 1

16
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we have that

12
S Y (ot - Rl — olRilr) - Rutr)’
H“FH 1 y
< >° (o ()~ R () — o (Ri(r) = R () |+ Ve
]:11 7€l -1 »
<> (o(Re (7) = B (0) = (R () = Ri () ) + Ve
2_11 el s b
< (o(R (7) = Ri (7)) = o (Ru(r) - Rt(m)))2 +2vke, (25

t=1 Teft|t_1

where the first and third inequality is obtained by applying
|o(Re (1) = Ri (1)) — o(Ri (-) = Ri(r0))|| , < €= (1+8")e.

. . _ _ 2
Finally, we leverage the relation between Zf;ll Z'reft\t—l (U(Rk (1¢) — Ry (10)) — o (R (1) — Ry (TO))>

and 8! Dretis (U(Rk (1¢) — Ry (10)) — o(Re () — Rt(To)))2 above to complete the in-
duction step. Specifically, consider a function space ﬁ;’g : T — R and filtered sequence {7, Nk }
in T x R, such that, n; is conditionally zero-mean G-sub-Gaussian noise. For R*(-) : I — R,
suppose that f = o(R* (1) — R* (10)) + nx and there exists a function R, € R, such that, for
any k € [K], Ele lo(R* (1) — R* (10)) — 0(Ry (1) — Ry (70))| < ¢. If Ry, is an approximate
empirical risk minimization solution up to some € > 0, i.e.,

~ N 2 1/2
5 (B ()~ B () — 1)
t=1 Teft|t—1 max{LAt(H)/ ‘O—(T ‘ Rt) - ft }
k 9 1/2
< min Z (o(R(1) = R(70)) — ft) e 6)

=1 ret,, maX{lyAt(Q)/ ‘U(T | Be) - fi

}

with probability at least 1 — §, then we have for all episodes k € [K],

R N B 2\ 1/2
(o (1) = R () — o(Ru(m) — Ri(m0))

max{l A (6 /‘ (t| R) 70(T|Rt)}

>y

t=1rely
< 10n%1n <2N (Rk L€ || - Hoo) /5)

(B (r) = Bi () = o(R (7) = R ()| &

+5;Te§_l max {1,40(0)/ |o(7 | R) = (7 | F)|}

—I—lO(’y—l—e/)((’y—i—e )k + \/kCo (k, ) 7)

where  C;(k, &) = 2 (&% + 2kG? + 3G*In(2/96)). The  rea-
son is as follows. For R € R.°, we define ¢ (R, 7y) =

—a[(o (7 | B) = f) = (o (r | R) = fx)°] /max {1, Ax(0)/ |o(7 | B) = o(r | )|}

where a = GT_2. Let R€ be an e-cover of R under the || - || norm. Denote the cardinality of R by

17
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N =N (R,¢| - |leo)- Since € is conditional G-sub-Gaussian and ¢ (R, ) can be written as
¢ (R, 7)) =2alo (i | R) — o (7 | R)] /max{l Ar(6) /‘0’ 7| R)—o(7 | I%k)‘}ek
—alo(n | R)— o (| R)] /max{l Aw(6 /’ (r | R) — o(r | Ry) ]}

+2a 0 (Tk|R)fU(Tk|R)]/maX{1Ak /’ T|RfUT\Rk’}§, (28)

and ¢ (R, 7,) is conditional 2aG [0 (74, | R) — o (7 | R)] / max {1, Aw(8)/ ‘U(T |R) — o(r | Rk)]}-
sub-Gaussian with mean

p=—alo(m|R) —o(r| R)f/max{l,/xk(a)/‘m |R) —o( | Rk)‘}

+2a¢ [0 (i | R)— o (mi | R)] /max{l,Ak(ﬁ)/ ‘a(r |R) —o(r | Rk)\} , (29)

-2 . . . . . . ..
where a = GT. According to Lemma if a variable X is o-sub-Gaussian with mean p conditional

on S, the property of sub-Gaussianity implies that

22
InElexp(s(X — ) | 5] < — (30)
By taking s = 1 in the inequality above, we get
Iy, exp (6 (R, ) — )| 7 ] < —— 2 LI R o (| A]”
Qmax{l,Ak(G)/ ‘U(T |R) —o(r | Rk)(}
_ [0 (| B) o (n | )]’ 61
8G2 max{l,Ak(G)/ ]a(T | R) - o(r | Rk)‘}Q
It follows that
InEy, [exp (¢ (R, 7)) | 7o, Te1]
g [0 (| B) — 0 (0| B)]” B [o (72| B) = 0 (7 | R)]®

~ 8@ max {1LAO)/ ol | B) —o(r | B[} 4GP max {1A0)/ |o(7 | R) —o(r | Bi)}

e [o (| R) — o (1 | R)

]2
2G2max{1 Ay (6 /' (7| R) —J(T\Rk)’}
)

+

B [(Tk\R—a(Tk\R]
8G2max{1,Ak /‘O’T|R)*U(T|Rk)’}

& [o(mu | R) — o (7 | R)]Q
262 max {1, A¢(6)/ |o(7 | R) = o(7 | Re)|}

(32)

where the second inequality is because max {1, Ar(6)/ ‘O’(T | R) —o(7 | Rk)‘} > 1. According
to Lemmawith A =1, we have for all R € R€ and k € [K], with probability at least 1 — §/2,

)< - [o (i | B) — o (7| R)]’
¢ (Rm) < ;8G2maX{I,Ak(9)/‘U(TR)—U(T|Rk)‘}
[o (e | R) — o (m | R)]" ¢
GQmaX{l Ax(0 /’ T|R)—U(T‘Rk)’}

M»

-
Il

+
HM;v -

+ In(2N/6). (33)

18
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Additionally, for all episode k € [K], we have with probability at least 1 — §/2,

k k
Z( (| R) — Z (| R)—o(r | R)+o(m | R*) — ft)2
t=1 t=1

k—1

IN

23" (o (m | B) = (me | B))* + (0 (e | BY) = 1))

=1

(¢

-~

IN

1 t=1

< 2(€+2kG” + 3G*In(2/9)), (34)

where the first inequality is obtained since Cauchy-Schwarz inequality and the last inequality is due

to Lemma 4l Now, given Rk, there exists R € ﬁ;’g, such that HRk — RH < €. With probability
(oo}

atleast 1 — §/2,

S0 1R 50— (0 (| B) — 5] foe {1,060 o | ) — o | )
<\l zk: ( (Tt | Rt) — ft)2/max{1,/\t(9)/ ‘0’(7‘ | R) —o(T | Rt)‘} + \/Ee)

J
<\lzk: (¢ | Ry) ft) /max{l A (0 /‘ T|R)—J(T|Rt)’}+\f(€+e))

j

=S (el B) = £)* /max {1,0(0)/ |o(r | R) ~ o(r | R2)

t=1

t=1

-3 (o (] 8 207 e {10 [t | ) ot 20}

t=1

<(e+&)Vk+2(e+e)VECL(E ), (35)

19
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where the first inequality uses ‘O’ (e |R)—0o <Tt | ]:2) ‘ < e and triangle inequality for all ¢. Finally,

B

k 1/2
+ (Z (0| B) =0 (v | R))* /max {1,2(0)/ |o(r | B) = o( | R2) })

with probability at least 1 — §, we have

<§f: (U (Tt | Rt) —o(n| R))2 / max {LAt(G)/ ]a(T |R) —o(r | Ry)

IA
9
ad

< Vek + <4§k: (o(re | R) =0 (7 | R))gt/max{l,At(G)/ ]a(T |R) —o(r | Rt)‘}
t=1

K 1/2
+ 8G°In(2N/6) —8G* > ¢ (R, Tt))

t=1

{t/maX{LAt(G)/ ‘J(T |R) —o(r | Ry)

j

<Vt (13 (o 1 R0) <o (1)

t=1

+4e€ + 8G*In(2N/8) + 2 (e + €)* t + 4 (e + €) VEC, (K, §)> i

< (1002 In(2N/8) + 52 ’cr (Tt | Rt) — o (r | B)| &/ max {1, A(8)/ ‘g(r |R) —o(r | Ry)

9 1/2
+5e€ +8(e+€) k+5(e+¢)\tCi(k, 5)) ) (36)

where the second inequality is deduced from Eq. (33) and the last inequality uses Cauchy-Schwarz
inequality.
Up to here, by letting ¢ = 2¢, G = 1 and adding the sum over only sub-sampling feedback I';;_,

and taking a union bound over R, € ﬁ;g, we can have that with probability at least 1 — 0, the
following inequality holds for all episodes k € [K] :

s (o (e 10) 5

t_1Terzt:tlmaX{1 Ay(0 /‘ T|R*U(T|R)

}

<10111(2H./\/'K(,5)/5)_~_5]€z_:1 Z ’0 <Tt‘Rk>—U(Tt‘RK) .
< t=1rer,,_, max {1, A(0)/ ’O’(T | R) —o(7 | Ry)

}

+10(e + 26) - ((e +28)k + /2K (€2 + 2k + 31n(2/6))) : 37)

Further, for all episodes ¢ < k& — 1, we have that

{1At9/’07|]:3 Y —o(r | Ry)

j

‘O’(Tt|Rk)70(Tt|R)

<l (Tt|Rk)_U(Tt|R) {1At /‘ T|R—O'T|Rt‘}

) ‘U(Tt|Rk)—0(Tt|Rt) ‘ (7 | R) t‘Rt) e
" max (LA |o(r | R) = o(r | B[} max {LA0)/ |o(r | R) = o(r | B[}

< 208" + ¢, 3%)

20
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where the last inequality is due to Rk € Ri—1 C R and the induction hypothesis that R, € R, for
k > t. Therefore, we have that, with probability at least 1 — ¢,

1/2

o (1 | Ri) —0( R))
)\+Z Z max{lAt /|UT|R o(r| Ri)|}

t= 1T€F|

. N2 1/2
Ry) — R,
(o (| ) = (| 7). Vit VA
= ety max {1, A(0)/ |o(r | ) —o(r | R)|}
1/2
(101n (2HNk (€)/8) + 10ag sup B + 5e€ + 10 (285 + 3)2 €K +10 (28] + 3) v/ K (k, g))
s<t
+ (BE+1)eVE + VA

k—

IN

IN

9 1/2
< (12)\ +121In (2HN¥k (€)/8) + 127E sup 7 + 12 (5 sup ﬁfw) K +60sup g%y KCl(k,£)>
t<k s s

< BE, (39)

where the first inequality uses the triangle inequality and the second last inequality uses Cauchy-
Schwarz 1nequahty Therefore, we validate the statement in Eq. . For all k£ € [K], by taking
k = k in Eq. (22)), we finally complete the proof.

O

By Lemma we know that the comparison based on ground-truth reward function R*(-) € Ry, with
high probability.

B.1.2 HIGH PROBABILITY EVENT FOR THE TRANSITION KERNEL

Lemma 2. Forall (k) € [K], ifforall k > 0, we let B, g+1 = 0 and from h = H to h = 1,

9 1/2
B > <12)\ +121In (2HNk (e, ) /8) + 127E sup B + 12 (5 sup 5%) K +60sup 8, y\/KCi(k, g)) :
t<k t t
(40)

where Ni(e,a) = NP6 |lo) + N(Sa X Aas6 | |lec) and Ci(k,§) =
2 (£2 4 2k +31In(2/6)), then with high probability at least 1 — 6, where § € (0,1), we
have P*(-) € Py.

Proof. To prove P*(-) € Py, with probability at least 1 — &, we prove that with probability at least
1 — 4, we have for all k € [K],

. 2
k-1 (O’(T|P*)—O’(T|Pk)>
A4y > —— < g, (41)
o, max {1,Af,(a)/ ’a(r |P*) — o(7 | Pt)‘}
by mathematical induction.
Base case: First, we have that Eq. (1) trivially holds for episode k = 1.

Hypothesis: Then, for episode k£ > 1, we assume that Eq. (41) holds for all episode ¢ < k— 1, which
means that for all episodes ¢ € [k — 1],

t—1 (J(T|P*)—J(T|Pt>)2 .
PP max{l,Ai(G)/‘a(T|IP*)—0(7'|]15’¢) } =7 @

=1 rely_y
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Induction: Thus, for episode k, we let P, be a e-covering set of Py, under the ||- ||, norm. Then, we
construct P, = Py @ B¥By” as a (1 + A7) e-covering set of ;7 under the || - || norm, where
B, is the bonus function space which can be relaxed under our sub-importance sampling idea (i.e.,
represented by the sum over 7 € fi‘i,l), and note that the covering set depends on the link function
o. Thus, to compare with P*, let P, € P).” so that ||o(Py, (-) — Pi (1)) — o(P} () — P} (70))|| , <
€ = (14 B) €. Then, by letting

k—1
Pr=argmind Y (0(P(r) — P(n0)) — o(Pe(r) — Pi(m0)))” . (43)

we have that

1/2
k=1 Z (U(Pk (1) — Py (10)) — o(Py(1) — Pt(TO)))Q
t—lkTelFttl )
< Z (U(I@k (T) - ]fD}c (TO)) — U(]}D:(T) _ P:(To))>2 . \/EE
< >> (0@ (1)~ Be(m) ~ o (Bi(r) ~F; o)) Vi
e
< (U(I@k (1) = Pr (0)) — o(Py(7) — Pt(TO)))2 s avie »

where the first and third inequality is obtained by applying
lo(Px (-) = P (10)) — o(PF(-) = Pi(n0)||, < €= (1+5F) e

. . _ _ 2
Finally, we leverage the relation between Zi:ll Zfefﬂt_l (o(]P’k (1¢) = Pi (10)) — o (Py(1) — ]Pt(TQ))>

- - _ _ 2
and Y5 Y (J(Pk (1) — By, (70)) — o(By(s) — Pt(m))) above to complete the induc-

tion step. Specifically, consider a function space f;’a : I' = R and filtered sequence {7k, N}
in T' x R, such that, 7, is conditionally zero-mean G-sub-Gaussian noise. For P*(-) : I — R,
suppose that f, = o(P* (13,) — P* (79)) + 7, and there exists a function P, € P,°, such that, for
any k € [K], Ele o (P* (1) — P* (70)) — o(Ry (1¢) — Ry (10))| < ¢. If Py is an approximate
empirical risk minimization solution up to some € > 0, i.e.,

( R N )2 1/2
k o(Py (1) = Pr (10)) — f2
;GFZ max {1,4,(6)/ ‘0(7' | B,) — ft’}
L ) 1/2
o [y CF@-Em) ) VR as)

=1 ref, s maX{LAt(e)/ ‘U(T | P,) — ft’}
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with probability at least 1 — 4, then we have for all episodes k € [K],

9\ 1/2
- (o(Be (7) = By (10)) — 0(Bu() — Bu(m0)))
;EFZ_ max {1,40(0)/ |o(7 | B) = o(r | By)| }
<10n%In (2J\f (ﬁ;’a,e, I - ||Oo) /6)
. (B (70) = B (70)) = (P (m) — P (o)) &
+5 — ~
;GFZ max {1,40(0)/ |o(7 | P) = o(r | P)| }
+10(y+€) (7 + ) b+ VRCI(R,E)) (46)
where  C;(k, &) = 2 (&% + 2kG? + 3G?In(2/96)). The  rea-
son is as follows. For P € P, we define ¢ (P,7) =
—a [(g (7 | P) = f1)? = (0 (7 | P) — f,ﬂ / max {1,Ak(9)/ ‘U(T | B) — o(r | fpk)‘}, where

G—2

a = . Let P€ be an e-cover of P under the || - || norm. Denote the cardinality of P¢ by
N = /\?(P, €]+ loo)- Since €, is conditional G-sub-Gaussian and ¢ (P, 7 ) can be written as

¢ (P, 1) = 2a [U (1 |P)—0 (Tk | I@)] /max{LAk(G)/ ’U(T |P) —o(T | I@k)‘} - €k

—alo(m |P)— o (7] T’)]Q/max{l,Ak(G)/ ‘U(T |P) — o( | I@k)‘}

+2a[o (e | P) = o (i | P)] /max {1, Ax(0)/ |o(7 | P) = o(r | P) | } € @7)

and ¢ (P, 7,) is conditional 2aG [0 (73, | P) — o (71, | P)] /max{l,Ak(é?)/ ‘0‘(7’ | P) — (T | I@’k)‘}—
sub-Gaussian with mean

p=—alo(m|P)—o(n| ]F’)]z/max{l,Ak(G)/ ]a(T | B) — o(r | I@k)‘}

+2a¢ [0 (i | P) — o (7 | P)] / max {1,Ak(9)/ ‘U(T | B) — o(r | ﬁm\} , 48)

-2 . . . . . . ..
where a = GT. According to Lemma if a variable X is o-sub-Gaussian with mean p conditional

on S, the property of sub-Gaussianity implies that

o?s?

InE[exp(s(X — u)) | §] < 5 49)

By taking s = 1 in the inequality above, we get

10°G? [0 (74 | P) — o (| B)]°
2 max {LAk(e)/ ’0‘(7’ | P) —o(r | I@’k)‘}Q
_ [o (| B) 0 (| B)]’
8G? max {1, A4(0)/ |o (7 | P) = (7 | Jf”k)\}Q

InEy, [exp (6 (P, ) — p) m,fk_l} <

. (50)
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It follows that

hlEfk{eXp(¢(Pﬁ7k))|7k»ft—{

< [O’(Tk|P)—O'(Tk|ED)]2 B [G(Tk|P)—a(Tk|P)]2

362 max {1 A0/ [o(r | B) = o(r [ Bo)| )} 4G2max{L.0x(0)/ [o(7 |B) = ol | )]}
& [o (i | B) — o (i | B)]?
2G2 max{l,Ak(G)/ ’O’(T | P) — o(T | Pk)‘}
B [0 (7 | P) = o (. | P)]?
8G2 max{l,Ak(H)/ ‘0(7’ | P) — o(T | Pk)’}

&k [o (T | P) — o (7 | P)]Q
9G2 max {LAk(@)/ ’0(7’ |P) —o(7 | ]F)k)‘}a

+

61V

where the second inequality is because max {1, Ax(6)/ ‘O’(T | P) — o(T | I@’k)’} > 1. According
to Lemmafd] with A\ = 1, we have for all P € P¢ and k € [K], with probability at least 1 — §/2,

SoEm <oy [o(n |P)~ o (n | B))’

P —~ 8G2 max{l,Ak(H)/‘o(T | B) — o(r | E»,c)‘}

. —\12
Z o (i |P) —o (| P)] "€ + In(20/8). (52)
P szax{l Ay (0 /‘ (1| P) —a(T\Pk)’}

Additionally, for all episode &k € [K], we have with probability at least 1 — §/2,

k k
Z Tt“P Z Tt|IF’ —o(m |P)4+o(n | P*) — ft)2
=1 t—

k-1

IN

2 ( (10 | P) — o (7 UP’*)) + (o (1 |P*)—ft)2)

k—1 k—1
2(2&%2%)
1 t=1

t=
< 2(£+2kG? + 3G* In(2/9)) , (53)

~

IN

where the first inequality is obtained since Cauchy-Schwarz inequality and the last inequality is due
to LemmaH Now, given ]f"k there exists P € ﬁ;’a, such that H]IA”;C — IP’H < €. With probability at
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least 1 —4/2,

S [(0 1B~ 7 — (o (| B) — 5’] /max {1,800/ o | B) (s | B2

t=1

}

\li( (Tt | ]P’t) —ft)Q/maX{l,At(9)/’U(7‘ | P) — o(r | Py }-l-\/Ee)
1 j
JZ]C: (r | B) = f2)° /maX{lAt /) T|P—U(T|Pt)}+f(e+e))

t=1
1

< 6+e/)2k+2(6+6/) kCy(k,8), (54)

/

Ma

(o (7| B) = f,)° /max{l,At(G)/ ‘a(T |B) — o(r | BY)

t

/

M?r

(o (r | P) — ft)Q/max{l,At(G)/ ‘0’(7’ | P) —o(r | Py)

~
Il

where the first inequality uses ‘a (11 |P)—0o (Tt | I@)‘ < e and triangle inequality for all ¢. Finally,

B

k 1/2
+ (Z (o (7 | P) = o (r | P))* /max {1,0(0)/ |7 | P) = o(r | By) })

with probability at least 1 — §, we have

<§k: (0’ (Tt | I@’t) A P’))Q/max{l,At(e)/ ‘0’(7’ | P) —o(r | Py)

IN

ﬁ
)

™

< Vek + <4§: (o (ri | P) = (2 | B)) &/ max {1, Au(6)/ ]a(T |B) — o(r | fpt)’}
t=1

& 1/2
+8G*In(2N/6) —8G* > " ¢ (P, n))

t=1

ft/max{l,At(Q)/ ‘0’(7’ | P) — o(7 | ]f”t)

g@+(4i\a(n|m)—a(m@> j

t=1

+4€€ + 8G* (2N /8) + 2 (e + €)* t + 4 (e + €') VEC, (K, §)> i

< (106‘2 In(2N/5) + 52% ]a (n | TP’t) —o(n|P)

£,/ max {1,At(0)/ ’U(T | B) — o(r | By)

j

) 1/2
566 +8(e+¢) 2k + 5 (e + &) VIC (K, 5)) , (55)

where the second inequality is deduced from Eq. and the last inequality uses Cauchy-Schwarz
inequality.

Up to here, by letting ¢ = 2¢, G = 1 and adding the sum over only sub-sampling feedback I';;_,
and taking a union bound over P,, € 5;’0, we can have that with probability at least 1 — §, the
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following inequality holds for all episodes k € [K] :

’“z‘;l 3 (0 (Tt | I@k) —Ps (Tt))2

max{l,At(G)/ ’O’(T |P) —o(r | [@’t)‘}

k— t p P ’
’0’ (7 ‘Pk) 0 ( t ‘HW) it
n 211/\/ € 5 1 A T PJ — T t

t= Teft\t—l

}

+10(e + 26) - ((e 28k + \/2k (€2 + 2k + 31n(2/5))) : (56)

Further, for all episodes ¢t < k — 1, we have that

‘U<Tt|]ﬁ’k)—o(rt|]f’) {lAte/‘O'T|P—O'(T|]th)‘}

S‘ (Tt|P}c)—U(Tt‘P) {1/\75 /‘ T|]P’—O’T|]Pt‘}
‘J(Tt|Pk>—O’(Tt|Pt> ‘ Tt|IP Tt|IP’t) .

- max{LAt(e)/‘a(T|1@>)_g(7|1@>t)]} max{l At(e)/‘ (r \P)_U(Tu@t)]}

< 2af8" + ¢, (57)

where the last inequality is due to P, € Pr_1 C P, and the induction hypothesis that P, € P, for
k > t. Therefore, we have that, with probability at least 1 — ¢,

1/2
o (1| Rk) —J( ]?’))
At 1
;Terzt%lmax{l A (0)/ |o(T | P) — o(7 | Ry)|}
. _ 2 1/2
k-1 o7 |Pr) —o (7| Pe
<1 > ( ( | k) d )) +Vite+ VA

max{l,At(Q)/ ’O’(T | P) —o(r | Py)

j

1/2
< (mm (2HNK (€, ) /5) + 10a€ sup 7 + 5e€ + 10 (267 + 3)” 2K + 10 (267 + 3) v/ K Ch (k, g))
s<t

+ (B +1)eVE + VA

t=1 Tefm_l

) 1/2

< (12)\ +121n (2HNk (6, @) /) 4 12y sup B + 12 (5 sup ny) K + 60sup fv\/KC (k, 5))
t<k s s

< Br, (58)

where the first inequality uses the triangle inequality and the second last inequality uses Cauchy-
Schwarz 1nequahty Therefore, we validate the statement in Eq. . For all k € [K], by taking
k = k in Eq. (#1)), we finally complete the proof.

O

By Lemma we know that the comparison based on ground-truth reward function P*(-) € P, with
high probability.

B.1.3 HIGH PROBABILITY EVENT FOR THE POLICY

Lemma 3. Under the high probability events for reward function R and transition kernel P, we
have * € Qy for all episodes k.
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Proof. First, we know that E . _p r+)o (7* | R*) > 0. We decompose the Left-Hand-Side (LHS)
of the above inequality into the following three terms:

E e v@q0 (77 | RY)
=By (77| BY) = Epe (3, 7)o (77| BY)
+ ET*N(]@%J*)J (T* | R*) — ET*N(@k,w*)J (7" | R)
+ ]ET*N(]pkm*)U (7" | R). (59)
We can upper bound the first term in the following way:
B0 (77 | R*) — ET*N@;}“W*)U (T | R*) < ]ET*N(]@MW*) (o] (79)] . (60)
By Lemma[2] we have that,
ET*N(@,CJ*)O'(T* | R*) — ET*N(ﬁ»kJ*)U(T* | R)

< ET*~(IP>k,7r*) max |o (7" | R1) —o (77| Ra)|

f1,f2€Br i
_ . . R
- ET*N(]P’k,ﬂ*),ToN(]P’k,WU)bk : (61)
Therefore, we have
E e (pone) (o (7) + bRk (7) + 8 (7)) 2 0,¥m, (62)
which indicates that 7* € Q).
O
B.2 STEP II: SUB-REGRET UNDER SUM-IMPORTANT STEINER POINTS
According to the confidence set Eq. in Algorithm[I] for all P’ € Py, we have
. 2
(P \ se ) = i (| o ae0) Vi)
A <BT.(63)
t€[k—1] T€Ty|,_1,hE[H] min{ 0)/ ’< (- | st s Gt h) s Vt,h>‘}
Let
(P 15,0) = Bl | 5,0)) Vis,)
bf (s,a) & max (64)

Vev, 5 2 1/2
k-1 ([P"=Pe)(-lst,n5a8,n): Vi,n )
PPy ()\ + Zt:l ZTGFt\tfl max{l,Af’(Q)/|<[p/_}5t](.|st’h)at’h),vt1h>})

According to Eg. and Eq. , we have <P’ (- | Skns Qr,n) — P, (| sk7h,ak7h),Vk,h> <
v/ BPbE (s, a), and thus

Vialro | P) = Via(ro | P)| < VBPH (70), (65)

where Vj, 1(79 | P) is equal to Vi 1(70) under transition P. Then, according to Eq. (2) and the
triangle inequality, we have

~&k < Via(ro | P) = Via(mo | P*) < 2v/B70] (s,a) + &, (66)
under the high probability event P* € P.
Then, we can show the sub-regret due to the inconsistency in the agent feedback as follows,

K

K
Reg(K) = [Vi" (10) = V™ (10)] < HC+ Y Vit (0) = Vi™ (m0)] (67)
k=1 k=1
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where the inequality uses Eq. (66). Next, we focus on bounding the second term on the
right-hand side of Eq. (67). A thought experiment: if the reward value for each state action
pair 7, is available, then given any policy 7 : § — A and a function f : § x A —
[0,1], at step h, the average Bellman error of f under the roll-in policy w, E(f,m, h) =
E[f (sh,an) —rh — f (Sht1,ah41) | @1:n—1 ~ T, Gp:nt1 ~ 7y] can be used to bound the overesti-

mation gap: Vy — V"™ = ZhH:1 E(f, 7y, h), where Vy = E[f (s1,7f (s1))]. This is because

ZE Sh, Clh —Th — f (Sh-i-h a’h-‘rl) | A1:h—1 ~ Tf, Qh:h4+1 ™~ 7Tf]
h=1

H
Z (snsan) —rn — f(Sn41,any1) | avg ~ myl

H
E > (f(snyan) = rh = f (sn41,an41)) | ar ~ 7Tf‘|

h=1
H
:E[ (51,7Tf (51))] —E lzrh | al:H Nﬂf]
h=1
V-V, (68)

where the first equality is because all H expected values share the same distribution over trajectories,
which is the one induced by a1.;7 ~ 7. Inspired by this idea, we can develop the upper bound of
the the second term on the right-hand side of Eq. , when the reward value for each state action
pair 7}, is unavailable, i.e., only a trajectory-wide comparison is available.

B.3 STEP III: BOUND THE SUM OF POLICY UNCERTAIN BONUSES

Now, we can upper bound the cumulative regret in Theorem |1 as follows. Since —&, < Vi 1(7o |
P) = Vi1(1o | P*) < 24/BFbE (s,a) + &, for all episodes k € [K], we have that

Reg(K ZET (@) [0 (T [ BY)] = By e oty [0 (73 | 7]

I
wa
—~

]ET*N(]@k,ﬂ*)O— (7" | R) — ETkN(HADka)U (7% | R))

k=1
K

) (Brenr )0 (77| BY) = Erp e )0 (7 | BY))
k=1
K

- (ET*N(@k,ﬂ*)U(T* | BY) =B, (p70)7 (T | R*))
k=1
K

+ Z (ET*N(I@’k,n*)U(T* | R*) — ]ETkN(E"k,ﬂ'k)U (7% | R*))
k=1
K

> (B (i) (7N R) =B (5,27 (71 | ). (69)

El
Il
—

We can bound the first term, second and third terms, fourth and fifth terms one-by-one. By definition,
we have 0 < b (1) < 1and 0 < bf(7) < 1. By Azuma’s inequality, the following inequality holds
with probability at least 1 — /2,

K
Reg(K) <&+E > > b +bf () + 4y/K log(4/6) | . (70)

k=17€ly11
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Thus,

K H
Reg(K) <6+ Y > Eny [En (fir skny akn))]

k=1h=1
§2HC+2 Z ]Eﬂ—k [min (1vﬁl§,hka,h (Sk,}“ak’h))]
(k,h):ok,n=1
P1
+2 Y B, [min (1,800 4 (sksakn))], (71)
(k,h):oK,n>1

Therefore, it follows that

Reg(K) = O <\/KH In (Nx (7)) dimp (F, A/ K) + ¢ (H + dimp (F, A/K))) NG

C SUPPORTING RESULTS

For completeness, we provide some preliminary results.

C.1 PRELIMINARY RESULTS IN|ZHANG|(2023)

Lemma 4. Let {€;} be a sequence of zero-mean conditional o-sub-Gaussian random variables:

InE [e)‘e"' Si_ﬂ < /\202/2, where S;_1 represents the history data. We have for t > 1, with
probability at least 1 — 6,
t
> € <2to® + 307 In(1/0). (73)
s=1

Proof. By invoking the logarithmic moment generating function estimate in Theorem 2.29 from
Zhang (2023), we know that for A\ > 0,

(A0?)’
1—2X o2’

Then, by using iterated expectations due to the tower property of conditional expectation, we get

t t—1
exp (AZG?) =E {IE exp ()\Ze? + ef) | Si—1 }
i=1 i=1
t—1
=E {exp (AZE?) “E [exp (€7) | St—l]}
i=1

(Ao2)” =1
Sexp ()\0'2“"1_2)\0-2> -E{exp ()\ZG?)}
i=1

2 2
< exp ()\to2 N (”")) , (75)

InE [exp (Ae) | Si—1] < Ao® + (74)

E

1—2\o2

where the first ineqaulity uses Eq. (74). Now, we can apply the second ineqaulity of Lemma 2.9
from (Zhang, 2023) with . = to?, a = 2to*, B = 202 and € = 202+/ut to obtain

t
exp <)\Z ef)] } < —u. (76)
i=1

inf {)\ (t02 + 2V utot + 2u02) +InE

A>0
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Thus, it follows that

t
P (Z e? < to? + 2V utot + 2u02>
s=1

E [exp ()\ S, ef)}
< inf
220 exp ()\ (t02 + 2Vuto* + 2u02>>

= /{I;% exp (—)\ <t02 + 2V utot + 2u02) +InE

(1337

<e™ 77

where the first inequality applies Markov’s Inequality, and the second inequality uses Eq. and
the monotonicity of the exponential function. Taking v = In(1/9) for & > 0, we obtain that with
probability at least 1 — 9

> € <to® +2/tIn(1/6)o* + 21n(1/6)0> (78)
s=1

< 2to? + 302 1n(1/9), (79)

where the second inequality is deduced since 21/t In(1/6)0* < to? + In(1/8)02.
O

Lemma 5. Let {X;}!" | be independent zero-mean sub-Gaussian random variables that satisfies

InEx, [exp (AX;)] < %, (80)
then for A < 0.5b;, we have
InEy, [exp (AX})] < —%m(l — 2\b;) . (81)
Let Z =Y | X?, then
Pr|z> zn:bi+2 tzn:b§+2t (mlaxbi) <et, (82)

=1 i=1

and

Pr ZgaifQ -t (83)
=1

Proof. Let € ~ N(0,1) which is independent of X;. Then for all Ab; < 0.5, we have
Ax2(A) = mEx, [exp (AX7)]
— InEx, [Eg {exp (\/ﬁgx)ﬂ
— InE¢ [Exi {exp (\/ﬁgx)ﬂ
< InE¢ [exp (AE?h;)]
_ _% In (1 —2);), (84)

where the inequality used the sub-Gaussian assumption. The second and the last equalities can be
obtained using Gaussian integration. This proves the first bound of the lemma.
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For A > 0, we obtain
AX;z()\) < —=0.5In(1 —2Xb;)
>, (27b;)"
k

=05
k=1

<N+ (Ab)* Y (22"
k>0

(Ab;)°

1—2Xb;

The first probability inequality of the lemma follows from Theorem 2.10 with p =

n Y bi,a=(2/n) Y, b7 and B = 2max; b;.

If A <0, then

= A\b; + (85)

Ax2(X) < —0.51n (1 — 2Xb;) < Ab; + A%}, (86)
The second probability inequality of the theorem follows from the sub-Gaussian tail inequality of
Theorem 2.12 with p =n~* 37" |, b;and b = (2/n) 3.1 | b?

i=1"1"

O

From Lemma we can obtain the following expressions for x? tail bound by taking b; = 1. With
probability at least 1 — §:

Z <n+2y/nln(1/6) +21n(1/6). (87)

and with probability at least 1 — ¢ :

Z >n—2y/nln(1/6). (88)
Definition 3. Given a random variable X, we may define its logarithmic moment generating func-
tion as

Ax(\) =InE [e*Y]. (89)
Moreover, given z € R, the rate function Ix (z) is defined as
supo Az~ Ax(N)] 2> p
Ix(z) =40 Z=p (90)
SUpyco (A2 —Ax(A)] z<p
where pn = E[X].
The above definition can be used to obtain exponential tail bounds for sums of independent variables
as follows.
Lemma 6. Foranynande > 0 :

— . AXL

In Pr (Xn > 1Y 6) < -1 X1 (M + 6) = /\]>l [—A(M + 6) + I Ee ] (9])
— InPr (X —€ — 1 — inf AX

n ( n < M ) < X1 (/,6 E) = /\l]<l [ A(/,I/ - E) —|— lnEe 1] (92)

Proof. We choose h(z) = ¢*"# in Theorem 2.2 with S = {X,, — 1 > €}. For A > 0, we have

B E AnX, E ADTE X
Pr(Xn2u+e)< © € !

= n(ute)  ean(ute)
E[T, M —An(pue) AX 1"
= oGt = e [Ee ] . (93)

The last equation used the independence of X; as well as they are identically distributed. Therefore
by taking logarithm, we obtain

InPr (Xn > u+ 6) <n [—)\(u +e)+ lnIEe)‘Xl] . (94)

Taking inf over A > 0 on the right hand side, we obtain the first desired bound. Similarly, we can
obtain the second bound.

O
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C.2 PRELIMINARY RESULTS IN|RUSSO & VAN ROY|(2013)) AND|RUSSO & VAN ROY|(2014)

Proposition 1. Fix any sequence {F; : t € N}, where Fy C F is measurable with respect to o (Hy).
Then for any T' € N, with probability 1,

T
Reg (T, 7<) < " [wr, (A) + C1(fo & F)] 95)
t=1
T
E [Reg (T,7"5)] <E | [wr, (A1) + C1(fo & F)]| - (96)
t=1

Proof. To reduce notation, define the upper and lower bounds U(a) = sup{f(a): f € 7} and
Li(a) = inf {f(a) : f € Fi}. Whenever fp € F;, the bounds L;(a) < fyp(a) < U(a) hold for all
actions. This implies

fo (A7) = fo (Ar) S Ui (A7) — L (Ar) + C1(fo & )
=wr, (A) + C1(fo & Fr) + [Ur (A7) — Up (Ar)] . 7
Eq. ( . 95)) follows almost immediately, since the policy 77> chooses an action At that maximizes

Uy(a). This implies Uy (A;) > Uy (A}) by definition, and the last term in Eq. (97)) is negative. The
result Eq. (93) follows by summing over .

Now consider Eq. (96). Summing equation Eq. (97) over ¢ shows,

T
Reg (T,7"%) <Y " [wr, (A) + C1(fs & Fu)l + Mr, (98)
t=1
T » . .
where My = >, | [U:(A;) —U:(As)]. Now, by the definition of Thompson sampling

P(A; €| H)=P(Af €| H;). Thatis A; and A are identically distributed under the posterior.
In addition, since the confidence set F; is o (H;)-measurable, so is the induced upper confidence
bound Uy (+). This implies E [U; (A) | Hy] = E [U; (A}) | Hy], and therefore that E [Mr] = 0.

O

C.2.1 PRELIMINARIES: MARTINGALE EXPONENTIAL INEQUALITIES
Consider random variables (Z,, | n € N) adapted to the filtration (Hn :n=0,1,...). Assume
E [exp {\Z;}] is finite for all \. Define the conditional mean y; = E[Z; | H;_1]. We de-

fine the conditional cumulant generating function of the centered random variable [Z; — ;] by
Pi(A) = log E [exp (A [Z; — pi]) [ Hi-1]. Let

A) = exp {Z AMZi — ] - %/Ji()\)} : 99)
i=1

Lemma 7. (M, ()\) | n € N) is a Martinagale, and E [M,,(\)] = 1.

Proof. By definition

E[My(N\) | Ho

=Elexp{A[Z1 — 1] =1 (A) [ Ho}]

= E[exp {A[Z1 — ]} | Ho] /exp {1 (M)}

— 1. (100)
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Then, for any n > 2,
E [Mn(/\) | Hn—l]

=E

exp {i AZi — wi] — 1/%()\)} exp{\[Zn — pn] = V(M) } | Hiz1
n—1
= exp {Z AMZi — i) — M(A)} Elexp {A [Zn — pn] = ¥n(N)} | Hin—1]

n—1
= exp {Z AMZi — pil = 1/%()\)}
i=1
= Mp—1(N). (101)
O
Lemma8. Forallz > 0and A > 0,P (3" AZ; <z + > 7 M + ¢i(N)],Vn € N) > 1 —e™*.

Proof. For any A\, M, () is a martingale with E [M,,(\)] = 1. Therefore, for any stopping time T,
E [Mpn(X)] = 1. For arbitrary 2 > 0, define 7,, = inf {n > 0 | M,,(\) > =} and note that 7, is a
stopping time corresponding to the first time M,, crosses the boundary at z. Then, E [M, nn(A)] =
1 and by Markov’s inequality:

2P (M, pn(A) > @) < EMr () = 1. (102)

We note that the event { M, r,(\) > 2} = Up_; {Mx(\) > z}. So we have shown that for all
z>0andn > 1,

8

P <U {M(2) = x}> <L (103)

k=1

Taking the limit as n — oo, and applying the monotone convergence theorem shows
P(Upey {Me(N) = 2}) < 2, or, P(Upe; {Mi(A) > €”}) < e~ . This then shows, using the
definition of My, (), that

P(D { 3 )‘[Ziﬂi}wi(A)zx}> <e " (104)

O

C.2.2 PROOF OF LEMMA[9]

Lemma9. Foranyé > 0and f : A— R,

1
P (L2i(9) 2 Las ) + 515~ oll s, — 40P hox(1/9) 0 €| 0) 215 (109

We will transform our problem in order to apply the general exponential martingale result shown
above. Since we work conditionally on 6, to reduce notation we denote the conditional probability
and expectation operators Py(-) = P(- | 6) and Egy[-] = E[- | 6]. We set H,;_;1 to be the o-
algebra generated by (H;, A;) and set Ho = (0, Q). By previous assumptions, €; := Ry — fo (A¢)

satisfies Eg [e; | H¢—1] = 0 and Eg [exp {Aes} | Hi—1] < exp {@} a.s. for all \. Define Z; =
(fo (Ae) = Re)” = (f (Ar) = Ry)

Proof. By definition ZlT Zy = Lory1(fo) — Lar+1(f). Some calculation shows that Z; =
—(f (A)) = fo (A))* +2(f (Ar) — fo (Ay)) €. Therefore, the conditional mean and conditional
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cumulant generating function satisfy:

e =Eo[Zy | Hooa] = — (f (A) — fo (A))? (106)
Pi(X) =logEg [exp (A [Zy — pue]) | Hi—1]

(2A[f (Ar) — fo (A" 7

= log Eg [exp (2A (f (A¢) — fo (Ar)) ) | Hia] < 5 (107)
Applying Lemma§]shows that for all z > 0, A > 0,
)\2
<Z N, < x— )\Z — fo (AR)° + 5 (2f (Ax) —2fs (A)’ 2Vt € N)
>1—e " (108)
Rearranging terms, we have
t t
T 2 2 —x
Py (;ZMA 22: — fo (Ar))” (2An —1)7VteN> >1—e " (109)
Choosing A = #, x=lo % and using the definition of 21 Zy, implies
Py (Lz,t(f) > Lo (o) + 5 I — foll3 s, — 407 om(1/5), vt € N) S1o6 (110
O

C.2.3 LEAST SQUARES BOUND - PROOF OF PROPOSITION 2]

Proposition 2. Forall 6 > 0and o > 0, if F; = {f eF: Hf - fthuz
allt € N, then

< m}f

st

Py (fgeﬂ}—t> >1—20. (111)

t=1

Proof. Let F* C F be an a-cover of F in the sup-norm in the sense that for any f € F there is an
f* € F*suchthat | f* — f||., < e. By a union bound, conditional on 6, with probability at least
1-9,

1
Loy (£*) = Loy (fo) = 5 15 = follo g, — 4n*log (|72 /0) ¥t €N, f € F*. (112)
Therefore, with probability at least 1 — ¢, for all ¢ € N and f € F, we have
1
Loy(f) = Lo (fo) 2 5 IS = foll3 g, — 4n* log (| F| /5)

b i {500 = Bl = 51T = ol + Danl) — Laa ()]

fc! EFQ

Discretization Eror

(113)
Lemma [10} which we establish in the next section, asserts that with probability at least 1 — &, the
discretization error is bounded for all ¢ by an; where 7, 1=t {80 + 4/8n21n (4¢2/ 6)} . Since the

least squares estimate fth has lower squared error than fy by definition, we find with probability at
least 1 — 26,

2
—fol, < an1og (171 /8) + am. (114)

Taking the infimum over the size of « covers implies:

def

—fol, < VPl (N (Fia T T) /0) + 20m & VB (Foba).  (115)

O
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C.2.4 DISCRETIZATION ERROR

Lemma 10. If f¢ satisfies || f — ||, < «, then, conditional on 0, with probability at least 1 — §,

1 1
S0 = ol s, — 517 = foll g, + L) Lae ()

<at [80 +/821In (4t2/§)] vt e N. (116)

Proof. Since any two functions in f, f* € F satisfy ||f — f¢| ., < C, it is enough to consider
a < C. We find

(/) (@) = (£P(@)] £ _max [(f(a) +9)* = f(@)?] =2f(a)a+a? £ 2Ca+a®, (117)

—a<y<a

which implies

|(£2(@) = fo(@)” = (f(@) = fol@))’|
= [[(*) (@) = f(a)’] + 2fs(a) (f(a) = f*(a))]
<4Ca + a?, (118)
and
(R = f(@)) = (R, — f(@))?|
= 2R, (f*(a) — f(a)) + f(a)® — f*(a)?|
< 20| Ry| + 2Ca + 0. (119)
Summing over ¢, we find that the left hand side of Eq. (TI6) is bounded by

t—1 t—1
Z( [4Ca + o?] + [2a|Rk|+2ca+a2}) <a) (6C+2|Ry|). (120)
=1 k=1

Because ¢, is sub-Gaussian, Py (|6k|> 27721n(2/(5)) < 4. By a union bound,

P, (Hk,s.t.,|ek| > /2P ln(4t2/6)) < 8% L < 5. Since [Ri| < C + |y, this shows

that with probability at least 1 — &, the discretization error is bounded for all ¢ by an., where
N =t [80 +24/27%In (47,‘2/5)].

O
C.2.5 BOUNDING THE SUM OF WIDTHS
Proposition 3. If (8:>0|t€N) is a nondecreasing sequence and JF; =
{f € F: Hf*ftLSHQE < \/E} then
- 8
D 1(wr, (Ar) >€) < (T + 1) dimg(F,e), (121)
€2
t=1

forall T € Nande > 0.

Proof. (i) We begin by showing that if w; (4;) > € then A; is e-dependent on fewer than 437 />
disjoint subsequences of (A, .., A;_1), for T > t.

To see this, note that if wyr, (4;) > € there are f, f € F, such that f(4;) — f(A¢) > e. By
definition, since f (A4;) — f (A¢) > e, if Ay is e-dependent on a subsequence (4;,, ..., 4;,) of
(Ay, .., A;_1), then Zle (f (Ai,) - f (/Lj))Q > €2, It follows that, if A, is e-dependent on K
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disjoint subsequences of (Ay, .., A;_1), then || f — f[|3 5, > Ke?. By the triangle inequality, we
have o

1F = flloe, < |7 - ftLSHlEt + - ftLSHQVEt <2v/B; < 2\/Br, (122)

and it follows that K < 487 /€.

(i) Next, we show that in any action sequence (a1, ..,a,), there is some element a; that is e-
dependent on at least 7/d — 1 disjoint subsequences of (a1, ..,a;_1), where d £ dimp(F, ).

To show this, for an integer K satisfying Kd + 1 < 7 < Kd + d, we will construct K disjoint
subsequences By, ..., Bg. First let B; = (a;) fort = 1,.., K. If ax41 is e-dependent on each
subsequence B, .., Bx, our claim is established. Otherwise, select a subsequence B; such that
ax 1 is e-independent and append ax 1 to B;. Repeat this process for elements with indices
j > K+1 until a; is e-dependent on each subsequence or j = 7. In the latter scenario ) | | B;| > Kd,
and since each element of a subsequence B; is e-independent of its predecessors, |B;| = d. In this
case, a, must be e-dependent on each subsequence, by the definition of dimg (F, €).

Now consider taking (as, . . ., a.) to be the subsequence (A, , ..., A; ) of (Ay,..., Ar) consisting
of elements A; for which wz, (A;) > €. As we have established, each A;, is e-dependent on fewer

than 437 /€? disjoint subsequences of (A;l7 . Atj—1). It follows that each a; is e-dependent on

fewer than 437 /€ disjoint subsequences of (a1, ..,a;—1). Combining this with the fact we have
established that there is some a; that is e-dependent on at least 7/d — 1 disjoint subsequences of

(a1,..,aj—1), wehave 7/d —1 < 4537 /€. It follows that 7 < (487/€® + 1) d, which is our desired
result.

O

Lemma 11. If (8, >0|teN) is a nondecreasing sequence and F; =
{f € F: Hf — ftLSH2 . < \/E} then with probability 1,

Zwﬂ (Ar) g +min {dimp; (F,af) . T} C + 4\ /dimp (F.oF) 62T, (123)

forall T € N.

Proof. To reduce notation, write d = dimpg (]—' , a% ) and w; = w; (A). Reorder the sequence
(wi,...,wp) = (Wiy,...,w;.) where w;, > w;, > ... > w;.. We have

Zw;t At

M’ﬂ

t=1

~

= 1{wlt<aT}+szt1{w“>aT}

t=1

IN
’ﬂ\

T
Z w;, 1 {w;, > aF }. (124)

The final step in the above inequality uses that either o = T2 and 3.,_, o = T~ or o is set

below the smallest possible width and hence 1 {w;, < 7.} never occurs.

Now, we know w;, < C. In addition, w;, > € <= ZZ 11 (wr, (Ag) > €) > t. By Proposition
this can only occur if £ < (45—5 + 1) dimp(F,€). Fore > of., dimg(F, ) < dimg (F, o) = d,

since dimg (F, €') is nonincreasing in €. Therefore, when w;, > € > az.,t < (4!% + 1) d, which
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implies € < 4ﬁ T‘i . This shows that if w;, > aT, then w;, < min {C 4ff d} Therefore,

T
> w1 {w;, > g} <dC+ Z 4d5T
t=1

t=d+1
< dC + 2\/dBr i
=0 f
= dC + 4\/dpsT. (125)

O

Lemma 12. (Optimism drives exploration, analog of Lemma 2). If the estimates Vf and € (fe, 7, )
in Line 3 and 8 of Algorithm 3 always satisfy

6/

8H’
throughout the execution of the algorithm (recall that €' is defined on Line 1), and f} is never
eliminated, then in any iteration t, either the algorithm does not terminate and

Ve = vy| < /8, [E (k) — € (o) < (126)

6I

E(feome, he) > T (127)

or the algorithm terminates and the output policy m; satisfies V™ > Vz , — ¢ — HO.

Then, we bound the two terms above respectively. For the first term, we deduce that

pr< Y En [max (L, Bes) min (1,bkn (Skns axn))]

(k,h):o’;cyhzl
2 . 2
< Z Z max ( (Br,n) ) “Er, Z min <17 (bk,h (Sk,hy AkR)) )
k=1h=1 (k,h):ok,n=1
" K ,
<SVEH1+B)\[Y_sup Y (Droy7n (Zen) s (128)
h=1%Kh —1

where the first inequality is due to the fact that min (ajas, b1b2) < max (ag, b1) - min (asz, bs), the
second inequality is obtained by using Cauchy-Schwarz inequality, and the last inequality utilizes
the definition of Dy o, 7, , (Zk,») in (13) and the selection of confidence radius: 3, = 3.

Then, for o4, > 1, according to the definition of oy in (14), we have (cr,yc,h)2 = 1l/a -
bi.h (Sk,n, ak,p). Thus, we can bound the second term as

p2 < Z E,, [min (1, Bren (0kn)” - ben (S axn)/ (Jk,h)2>}

(k,h)iok,n>1
< Z Ex, [min (1,Bk,h/a - (bn (Sk,hvak,h))z / (Uk7h)2)}
(k,h):o’k,h,>1
K H
<Bla- ZZE” {min (1, (br,n (Sk,h,ak,h))Q/(Uk,h)Q)}
k=1h=1
H K )
< 6/& . ZZEﬂ'k |:(D)\,0'h,]:k,h (Z}f’h» :|
h=1k=1
H K )
<8 su (Dxon 7 (Zin)) " (129)
h=1 ZK =t
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where the Dy 5, 7, , (Zk,1) is formulated in Definition 13 . Combining these results, we get

H K

Reg(K) < 2HC+VEH(1+8),| > sup S" (Dronron (Zin)’
h=17Kh =1
H K

+ B/a- Z sup Z (Dxon.Fun (Zk,h))2

h=1Z2K.h 1

:@((H—&-Zsupz D/\oh,fkh(Zkh)) >C

h=14Kh

H K
+ KH]H(NK Z sup Z D)\O'h,]:kh Zkh)>2
h=1%Kh k=1
H K 9
+a(,| KH Z Z Dxo) 700 (Zk-,h))
h=1 P =1

Z upz D)\Uh]:kh(Zkh>) /a>

S
Zth. 1

H K

=0 | | EHmWNx() Y sup Y (Droy.7i (Zin))’

h=1ZKh 1

+ CZ sup Z Dy 30hF,h (Zk h)) > ) (130)

h=1 %K. =1
where the first inequality is deduced by taking the bounds of terms p; and p, back into Eq. (71)),
the first equality uses the choice of 8 = O (a(j + /In (H In (N, (7)) /6), and the last equation is

obtained by setting @ = /In (N (7)) /<.

Then, it suffices to replace weighted eluder dimension sup,,. , Zszl (DA,U,W Fioon (Zk,h))2 with

the eluder dimension dim g (F, €) in Definition 2.7. Because F is factorized as HhH:1 Fn, we get

dimp(F,€) ZdlmE Fhy€). (131)
By invoking Lemma 5.1 for each function space .7-"h, we obtain
K
2 .
;up Z DixonFun (Zep))” < (V8o + 3) dimp (Fp, A/K) log(K/A) In K, (132)
Kb g=1

which indicates that
H K

S sup S (Daonrn (Zin))? < (V8eo +3) dimp(F, A/K) log(K/\) In K. (133)

h=1ZKh =1
D EXISTING IDEA: IMPORTANCE SAMPLING

For completeness, we repeat the discussion in existing importance sampling Wang et al.[ (2020).
Assumption 1. For any € > 0, the following holds:

1. there exists an e-cover C(F,e) C F with size |C(F,¢e)| < N(F,e€), such that for any f € F,
there exists f' € C(F,e) with ||f — f'|| <&

2. there exists an e-cover C(S x A, €) with size |C(S X A,e)| < N(S x A, ¢€), such that for any
(s,a) € S x A, there exists (s',a’) € C(S x A,e) withmaxyer |f(s,a) — f(s',d')| <e.
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Algorithm 2 F — LSVI(J)

1: Input: failure probability 4 € (0, 1) and number of episodes K
2: for episode k =1: K do
3:  Receive initial state 55,1 ~ [

4. Qk,H—l—l(’y’) < 0 and Vk,H+1(') ~—0

50 2 { (st at»h')}(t,h’)e[k—l]x[H]

6: forh=H:1do

7 Din = {(8e,0r5 at,ne s Ten + Vi g (Senr 41, a))}(t,h’)e[k—l]x[H]

8: fron < argminger || I3, ,

9: bi.n(,-) < Bonus (F, fx.n, Zk,0) (Algorithm 3)

10: Qr,n ()« min{fx n(-,-) + brn(-,-), H} and Vi p(-) = maxaea Qr,n(-, a)

11: Te,n() < argmaxae a4 Qk,n (-, a)

12: for h=1:H do

13: Take action aj, < 7, (Sk,n) and observe sipr1 ~ P (- | Sk.n,ak,p) and 75 =
7 (Sk,hy Qk,h)

14: end for

15:  end for

16: end for

Assumption [T] requires both the function class F and the state-action pairs S x A have bounded
covering numbers. Since our regret bound depends logarithmically on N'(F,-) and N'(S x A, -), it
is acceptable for the covers to have exponential size. In particular, when S and A are finite, it is clear
that log N (F, €) = O(|S||A|) and log V(S x A, ¢) = log(|S||.A|). For the case of d-dimensional
linear functions and generalized linear functions, log N(F, ¢) = O(d) and log N (Sx A, £) = O(d).

For quadratic functions, log N'(F, ) = O (d?) and log N'(S x A, ) = O(d).

D.1 ALGORITHM OVERVIEW

Stable Upper-Confidence Bonus Function. With more collected data, the least squares predictor is
expected to return a better approximate the true Q-function. To encourage exploration, we care-
fully design a bonus function by j, (-, -) which guarantees that, with high probability, Q p+1(s,a)
is an overestimate of the one-step backup. The bonus function by j,(+,-) is guaranteed to tightly
characterize the estimation error of the one-step backup

()4 Y P ) Vi (51) (134)
s'eS
where
Vient1(-) = I(%aj(Qk,iz+1(',a) (135)

is the value function of the next step. The bonus function b, 1 (-, -) is designed by carefully priori-
tizing important data and hence is stable even when the replay buffer has large cardinality.

D.1.1 STABLE UCB VIA IMPORTANCE SAMPLING

To define the confidence region Fy, 5, a natural definition would be

Fin={f € FIIf = funlls, <8}, (136)
where (3 is defined so that
r()+ > P | ) Vi (8) € Fin (137)
s'eS

with high probability, and recall that Z;, = {(st,h/,at,h/)}(t hyElk—1)x [H] is the set of state-action
pairs defined in Line 5. However, as one can observe, the complexity of such a bonus function
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Algorithm 3 Sensitivity-Sampling (F, Z, A, £, 0)

1: Input: function class F, set of state-action pairs Z C S x A, accuracy parameters A, ¢ > 0 and
failure probability § € (0,1)

2: Initialize Z’ + {}

3: For each z € Z, let p, to be smallest real number such that 1/p. is an integer and

p, > min {1,sensitivityg7]:,A(z) 724N (F,e/72 - /A3 /(12]))/96) /52}. (138)

4: For each z € Z, independently add 1/p, copies of z into Z’ with probability p,
5: return Z’

Algorithm 4 Bonus(F, f, Z,6)

1: Input: function class F, reference function f € F, state-action pairs Z C S x A and failure
probability 6 € (0, 1)

2: Z' + Sensitivity-Sampling(F, Z,§/(167T),1/2,6) >

3: 2"+ {}if | 2’| > 4T/ or the number of distinct elements in Z’ exceeds

6912 dimp (F,5/ (167%)) log (64H>T?/8) InT In(4N(F, 5/ (566T)) /). (140)

4: Let f € C(F,1/(8\/AT/6)) be such that || f — fllee < 1/(8+/4T/3)
50 2+ {}
6: for 2 € Z' do
7. Letz € C(S x A, 1/(8,/4T/6)) be such that sup; ¢ = | f(2) — f'(2)| < 1/(81/4T/3)
8 Z<+ ZU{3}
9:  return @(-,-) := w(F,, ), where F = {f e FIIIf - fIIZ < 38(F,8) + 2} and
B(F,8) = ¢ H? - log*(T/6) - dimp (F,5/T%)
In (N (F,6/T?) /68) - log(N(S x A,8/T)) - T/$ (141)

for some absolute constants ¢’ > 0.
10: end for

could be extremely high as it is defined by a dataset Z;, whose size can be as large asT = KH. A
high-complexity bonus function could potentially introduce instability issues in the algorithm. Tech-
nically, we require a stable bonus function to allow for highly concentrated estimate of the one-step
backup so that the confidence region F, , is accurate even for bounded 3. Our strategy to "stabilize”
the bonus function is to reduce the size of the dataset by importance sampling, so that only impor-
tant state-action pairs are kept and those unimportant ones (which potentially induce instability) are
ignored. Another benefit of reducing the size of the dataset is that it leads to superior computational
complexity when evaluating the bonus function in practice. In later part of this section, we intro-
duce an approach to estimate the importance of each state-action pair and a corresponding sampling
method based on that.

Definition 4. For a given set of state-action pairs Z C S x A and a function class F, for each
z € Z, define the A-sensitivity of (s, a) with respect to Z and F to be

! 2
sensitivity z = (s, a) = max (f(s,a) = f (j,a)) .
| I [
[F=122

(139)

Sensitivity measures the importance of each data point z in Z by considering the pair of functions
f» /' € F such that z contributes the most to || f — f’||25.
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D.2 COMPUTATIONAL EFFICIENCY

~

To implement importance sampling, one needs to evaluate the width function w(F, -, -) for a confi-
dence region F of the form

F={rerlIr-fIz <8}, (142)

which is a constrained optimization problem. When F is the class of linear functions, there is a
closed-form formula for the width function and thus the width function can be efficiently evaluated
in this case. Simple complexity upper bound is no longer available for the class of general functions
considered in this paper. Instead, we bound the complexity of the bonus function by relying on the
fact that the subsampled dataset has bounded size. Scrutinizing the sampling algorithm, it can be
seen that the size of the subsampled dataset is upper bounded by the sum of the sensitivity of the data
points in the given dataset times the log-convering number of the function class F. To upper bound
the sum of the sensitivity of the data points in the given dataset, we rely on a novel combinatorial
argument which establishes a surprising connection between the sum of the sensitivity and the eluder
dimension of the function class F. We show that the sum of the sensitivity of data points is upper
bounded by the eluder dimension of the dataset up to logarithm factors. Hence, the complexity
of the subsampled dataset, and therefore, the complexity of the bonus function, is upper bound by
the log-covering number of S x A (the complexity of each state-action pair) times the product of
the eluder dimension of the function class and the log-covering number of the function class (the
number of data points in the subsampled dataset).

In order to show that the confidence region is approximately preserved when using the subsampled
dataset Z’, we show that for any f, f' € F,||f — f’||2z, is a good approximation to || f — f’||22. To
show this, we apply a union bound over all pairs of functions on the cover of F which allows us
to consider fixed f, f' € F. For fixed f, f' € F, note that ||f — f’HZZ, is an unbiased estimate of

lf=r ||22, and importance sampling proportional to the sensitivity implies an upper bound on the
variance of the estimator which allows us to apply concentration bounds to prove the desired result.
We note that the sensitivity sampling framework used here is very crucial to the theoreical guarantee
of the algorithm. If one replaces sensitivity sampling with more naive sampling approaches (e.g.
uniform sampling), then the required sampling size would be much larger, which does not give any
meaningful reduction on the size of the dataset and also leads to a high complexity bonus function.

Our algorithm applies the principle of optimism in the face of uncertainty (OFU) to balance ex-
ploration and exploitation. Note that V}, 5,41 is the value function estimated at step » + 1. In our
analysis, we require the )-function @), j, estimated at level A to satisfy

Qun()=>r(,)+ Z P(s"| ) Vint (8) (143)
s'eS

with high probability. To achieve this, we optimize the least squares objective to find a
solution f; ), € JF using collected data. We then show that fj, is close to 7(-,-) +
Y>ses P (s |+-) Vi ngr (s'). This would follow from standard analysis if the collected samples
were independent of V}, ;1. However, V}, ;11 is calculated using the collected samples and thus
they are subtly dependent on each other. To tackle this issue, we notice that V}, 5,41 is computed by
using fi n+1 and the bonus function by 41, and both f;, 511 and the bonus function by, 41 have
bounded complexity, thanks to the design of bonus function. Hence, we can construct a 1/7-cover
to approximate Vj, 41. By doing so, we can now bound the fitting error of fj, ;, by replacing Vi, p41
with its closest neighbor in the 1/7-cover which is independent of the dataset. By a union bound
over all functions in the 1/T-cover, it follows that with high probability,

r()+ D P(s' ] ) Vins (8) € {f EF I~ funl, < 3} (144)

s'eS

for some /3 that depends only on the complexity of the bonus function and the function class F.

D.3 ANALYSIS OF THE STABLE BONUS FUNCTION

Our first lemma gives an upper bound on the sum of the sensitivity in terms of the eluder dimension
of the function class F.
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Lemma 13. For a given set of state-action pairs Z,

> sensitivity z 5 5 (2) < 4dimp(F, \/|2])log ((H + 1)*| Z2|/A) In|Z|. (145)
z2€Z

Proof. Foreach z € Z,let f, f' € F be an arbitrary pair of functions such that || f — f’ ||22 > Xand
(f(z) = I'(2))°

2

If = flz
is maximized, and we define L(z) = (f(z) — f'(2))? for such f and f’. Note that 0 < L(z) <

(H+1)2% Let Z = Ulog((HH) 121/2)-1 Z*U Z°° be a dyadic decomposition with respect to L(-),
where for each 0 < a < log ((H + 1)?|Z|/)), define

(146)

={z€Z|L(z) e (H+1)?- 27> (H+1)* 27} (147)
and
Zx¥={z€ Z|L(z) <)\|Z]} (148)
Clearly, for any z € Z°°, sensitivity z » y(2) < 1/|Z| and thus
Z sensitivity z » \(2) < 1. (149)
ZEZ®

Now we bound )
For each o, let

»e zo Sensitivity z z 5 (z) for each 0 < o < log ((H + 1)2|Z|/\) separately.

= [2%| /dimg (F,(H+1)*-27°7), (150)
and we decompose Z“ into NN,, + 1 disjoint subsets, i.e., Z¢ = U;V 1+ ! Z3", by using the following
procedure. Let Z¢ = {zl7 22,0152 ZQ‘} and we consider each z; sequentlally. Initially 28 = {}

for all j. Then, for each z;, we find the largest 1 < j < N, such that z; is (H + 1)? - 27" L.
independent of Z* with respect to F. We set j = N, + 1 if such j does not exist, and use

j(z) € [No+1] to denote the choice of j for z;. By the des1gn of the algorithm, for each z;, it is
clear that z; is dependent on each of Z{*, Z5*, .. ZJ‘J‘(Z )—

Now we show that for each z; € Z<,
sensitivity z z \ (2:) <2/ () (151)

For any z; € Z%, we use f, f € F to denote the pair of functions in F such that || f — f’HQZ > A
and

(f (z) = /' (2)°

(152)
2
If=flz
is maximized. Since z; € Z%, we must have (f (z) — f' (z))° > (H + 1)2- 271 Since z is
dependent on each of Z¢, 2§ ..., Z¢ | foreach 1 < k < j(z;), we have
J(Zl) 1
If = fllzp > (H+1)?- 2727 (153)
which implies
/ 2 2 —a
i) — i H+1)*-2
sensitivity z » y (2;) = (=) =] (22 ) < (H+1) 5
If = f'lz If = f'lz
H+1)2-272
( - 5 <2/j(2). (154)

E“Z’ 1f = Fllze + (f () = (22))
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Moreover, by the definition of (H + 1)2 . 27“~l.independence, we have ]Zﬂ <
dimg (F,(H +1)?. 27 ) forall 1 < j < N,. Therefore,

> sensitivityz x5 (2) < Y |ZY]-2/i+ D 2/Na

ZEZ 1<j<Nq, ZEZR 41
2di F,(H+1)2.27271
<2dimp (F, (H + 1) 27°7) In (Na) + | 2°] - =2 ( (|Za ) )
<dimg (F, (H +1)*- 27" In(| Z]). (155)
By the monotonicity of eluder dimension, it follows that
Z sensitivity z = \(2)
z€Z
log((H+1)?|Z|/A)-1
< Z Z sensitivity z 7 \(2) + Z sensitivity z 7 4 (2)
a=0 zEZ™ ZEZ>®
<3log ((H +1)*|Z|/A) dimg(F, M| Z|) In(|2]) + 1
<4log ((H +1)*|Z|/A) dimg/(F, N/|Z]) In(| Z]). (156)

O

Using Lemma we can prove an upper bound on the number of distinct elements in Z’ returned
by the sampling algorithm (Algorithm 23).

Lemma 14. With probability at least 1 — 6 /4, the number of distinct elements in Z' returned by
Algorithm 2 is at most

1728 dimpg (F, A/|Z|) log ((H + 1)*|Z|/A) In(|2]) In(4N(F, /72 - /A6 /(|1 2])) /) /€*. (157)
Proof. Note that
p, < min {1, 2 - sensitivity z z (2) - T2In(4N(F, /72 - /\5/(|ZD)/5)/€2} , (158)

since for any real number x < 1, there always exists T € [z, 2x] such that 1/Z is an integer. Let X,
be a random variable defined as

1 zeZ
X, = {0 s (159)
Clearly, the number of distinct elements in Z’ is upper bounded by » .- X, and E [X.] = p.. By
Lemmal[I3]
Y E[X.]
zEZ
< 576 dimp (F, A/|Z])log ((H + 1)?|Z|/A) In(|2]) In(4N(F, /72 - /A /(|2])) /6) /2.
(160)
By Chernoff bound, with probability at least 1 — §/4, we have
>x
zEZ
> 1728 dimp(F, /| Z]) log ((H + 1)%|2|/A) In(|Z|) (4N (F,e/72 - \/A6/(|2])) /) />
(161)
O

Our second lemma upper bounds the number of elements in Z’ returned by Algorithm 2.
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Lemma 15. With probability at least 1 — §/4,|Z'| < 4|Z|/4.

Proof. Let X, be the random variable which is defined as

X, = {1/172 2 is added into 2’

162
0 otherwise (162)

Note that [Z/| =
12" < 4]21/8.

.cz Xz and E[X.] = 1. By Markov inequality, with probability 1 — /4,

O

Our third lemma shows that for the given set of state-action pairs Z and function class F, Algorithm
2 returns a set of state-action pairs Z’ so that || f — f’ H%z is approximately preserved for all f, f’ € F.

Lemma 16. With probability at least 1 — §/2, for any f, f' € F,
A=) f = Flz—22<|f = Fll% < A +e)|If — fII% + 82N/, (163)

Proof. In our proof, we separately consider two cases: ||f — f’||22 <2\and ||f — f’||é > 2\

Case It ||f — f’||22 < 2X. Consider f, f' € F with Hfff’||23 < 2\. Conditioned on the
event defined in Lemma which holds with probability at least 1 — §/4, we have || f — f'||%, <
12| f — f’||2Z < 8|Z|\/6. Moreover, we always have || f — f'[| z, > 0. In summary, we have

If = £z =2X < If = £l < I = £1Z + 812N/, (164)
CaseII: || f — f’||22 > 2). We first show that for any fixed f, f' € F with ||f — f’||22 > \, with
probability at least 1 — & /(4N (F,e/72 - \/Ad/(|Z]))), we have
2 2 2
A=e/DIfF=Flz<Mf=Fllz <Q+e/DIf = flz- (165)
To prove this, for each z € Z, define

¥ {1 (f(2) — f'(2))® zisadded into Z’ for 1/p. times

Pz

. (166)
0 otherwise

Clearly, | — /'] 5 = Sres Xo and E[X.] = (£(2) — f(2))*. Moreover,since [|f — |5 > A,
by (3) and Definition 3, we have

max X. < |f I - 2/ (2 (N (F, /72 /A5 ZD)/6). (167)
Moreover, E [X2] < (f(z) — f'(2))" /p.. Therefore, by Holder’s inequality,

D Var[X] < YOE[XI] < Y7 (F(2) - £1(2)" max (f(2) — £1(2)° /ps

zZEZ zZEZ z€Z
<|If = f/lIz - €2/ (T2Im(AN (F. 2 /72 - \/A/(|2]))/6). (168)

Therefore, by Bernstein inequality,

Pr([llf = £z~ 17 = 7%

Pr[ZE[Xz]ZXZ

>e/a-|If - fI13]

>e/d-|f - f’é]

z2€EZ zEZ
/14
<dex <_ /16 1f - 7 2 )
2> ez Var[X.] +2max.cz X, -e/4-|f - f'llz /3
<(0/4)/(N(F,e/72-/A3/(|12])). (169)
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By union bound, the above inequality implies that with probability at least 1 —§ /4, for any (f, f’) €
C(F,e/T2-\/AS/(|Z])) x C(F,e/T2- \/AS/(|Z])) with || f — f|[Z > A
e/ = F Uz <N = Flz < A/ = LIz (170)

Now we condition on the event defined above and the event defined in Lemmal[T5} Consider f, f’ €
F with || f — f’sz > 2. Recall that there exists

(F.77) € ctFe/m2- VAS/(ZD) x C(F, /72 /N5 (2])). a171)
such that || f — flleo < /A/(25|Z]) and ] =71 < \/A/(25]Z]). Therefore,

\7-7

=Y (fe - Fe)

zEZ

=3 (1 - £G + () - 10+ (70 - 7))

2€Z
S (T T P
z
>(vV2X — 2¢/A/25)% > A, (172)
Therefore, conditioned on the event defined above, we have
(- |F-F<|F-7| cavem|F-7[ - (73)
z z z

Conditioned on the event defined in Lemma |15| which holds with probability at least 1 — §/4, we

have
2
2)

1= sz < (|7 7|, + 1= Pz + |7 =7
<(|F- 7|, +2viET e/r2- Vo7
<(a+e/9)||7-7||, +2vIT-e/72- VAST(ED)
< (U /O)1f ~ Tz +2V/1Z7 /72 VASIZD + 4[] - /72 VASZD) )

<@+e)lf - flIZ, (174)

where the last inequality holds since || f — f||z > V/A. Similarly,
17 =712 > (|F- 7|, s = Al |5 = 7[)°

> (|F-7|,, ~2viZ1-</72- V3aizD)

> ((—e/6) |[F - 7|, ~2v/127- <2 /A5TT2D)

> (L= e/6)1f ~ Fllz —2V/[Z7]- /72 VAB(Z]) ~ 2V/[2] - /72 /3 ([2]))
>(1-9)f - flIZ- (175)

O

Combining Lemma [[4] Lemma [T5} and Lemma [I6] with a union bound, we have the following
proposition.
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Proposition 4. With probability at least 1 — 5, the size of Z' returned by Algorithm 2 satisfies
|2'| < 4| Z]/6, the number of distinct elements in Z is at most

1728 dimp(F, A/|Z]) log ((H + 1)*|Z|/A) In(|Z]) In(4N(F, /72 - \/AS/ (|1 Z])) /0) /> (176)
and for any f, f' € F,
A=) lf = Flz=2X< = Flz < A +e) I f = £z +81217/0 (177)

Proposition 5. For Algorithm 3, suppose |Z| < KH =T, the following holds.
1. With probability at least 1 — 6 /(16T),
w(FE,s,a) < iw(s,a) <w(F,s,a), (178)

where F = {f € F | |f = fIZ < B(F.0)}, and F = {f € F | ||f = fII%Z < 9B8(F,9) +12}.
2. w(-,-) € W for a function set W with

log |W| < 6912dimg (F, 5/ (167%)) log (16(H + 1)°T?/6) In T In(4N (F, 5/(566T))/4)

log(N (S x A, 1/(8y/4T/6)) - AT/6) + log(N(F,1/(8+/4T/9)))

< C-dimg (F,8/T?) -log (H*T?/8) - InT - In (N (F,5/T?) /4)

log(N (S x A,6/T))-T/6), (179)
for some absolute constant C' > 0 if T is sufficiently large.

Proof. For the first part, conditioned on the event defined in Proposition[d] for any f € F, we have

If = flZ/2=1/2<|If = flIZ <3If - flIZ/2+1/2. (180)

Therefore, we have
17— 7% < (17 — Pz + V/AT75/(8/4T75))
< (I = fllz+ VATT5/(8/ATT5) + /AT]5/(8\/ATT5))
<2||f = fI% + 2(/AT/3/(8/AT/0) +v/AT/5/(8/AT[0)* < 3l|f — fI% +2,  (181)

and

15 = 1% = (1 ~ Fllz — V/ATT5/(8/3T75))

_ 2
> (I ~ Fllz — v/AT]5/(8/AT75) — /AT75/(8:/T]5))
>||f = fllz/2 = (VAT/S/(8\/AT/6) + \/AT/5/(8\/4T/6))* > || f = fI%/3-2. (182
Therefore, for any f € F, we have || f — f||Z < B(F,6), which implies || f — f||2 < 38(F,8) +2
and thus f € F. Moreover, for any f € F, we have IIf - J/C\HQA < 3B8(F,d) + 2, which implies
If = flIZ < 9B(F,0) +12.

For the second part, note that @(-, ) is uniquely defined by F. When |Z| > 4T/§ or the number of
distinct elements in Z exceeds

6912 dimg (F,6/ (167%)) log (16(H + 1)*T%/6) InT In(4N(F, 5/(566T))/5), (183)

we have |Z| = 0 and thus F = F. Otherwise, F is defined by f and Z. Since f €

C(F,1/(8\/4T/3)), the total number of distinct f is upper bounded by A/(F, 1/(81/4T/3)). Since
there are at most

6912 dimp (F,8/ (167%)) log (16(H + 1)*T?/8) In T In(4N(F, §/(566T))/5) (184)
distinct elements in Z, while each of them belongs to C(S x A, 1/(8+/4T/5)) and | Z| < 4T'/5, the
total number of distinct Z is upper bounded by
V(S x A, 1/( &/F ) - 4T/5) 6912d1mE(]-' 5/(167%)) log(16(H+1)°T?/5) In T In(4N'(F,6/(566T))/6)

(185)

O
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D.4 ANALYSIS OF THE ALGORITHM

We are now ready to prove the regret bound of Algorithm 1. The next lemma establishes a bound on
the estimate of a single backup.

Lemma 17. (Single Step Optimization Error). Consider a fixed k € [K]. Let
2y, = A{(se.m, at»h,)}(tﬁh’)e[kfl]x[H] ) (186)
as defined in Line 5 in Algorithm 1. Forany V : S — [0, H], define
DY = {(stn,aensren +V (St,h'+1))}(t7h/)e[k_1]x[H] ) (187)
and

Vo= ar]grgianH%X. (188)
€

ForanyV : S — [0,H] and 6 € (0,1), there is an event £V** which holds with probability at least
1 — 6, such that conditioned on EV°, for any V' : S — [0, H] with |V' — V||, < 1/T, we have

||fV’<',->—r<~,~>— STP( )V < (H10g(2]0) + g N(F. 1/T)), (189)

s'eS

Zy,

for some absolute constant ¢’ > 0.

Proof. Tn our proof, we consider a fixed V' : § — [0, H], and define

fUe)=r() + 3 P 1)V (), (190)

s'esS
Forany f € F, we consider 3_; jyc(x—1]x(m) .0 (f) where

ft,h(f) =2 (f (St,fu at,h) - fv (St,h, auh)) : (fv (St,h7at,h) —Tt,h — |4 (S;TL+1)) . (191)
For any (¢, h) € [k — 1] x [H], define F, ;, as the filtration induced by the sequence

{(St,h'7 atah/)}(t,h’)G[Tfl]X[H] U {(51-7 CLI) ) (857 ag) PRI (52—17 a;—l)} . (192)
Then E [& 1(f) | F¢p] = 0 and
en(F)] < 2(H + 1) | f (se.psaen) — ¥ (Sens aen)] - (193)

By Azuma-Hoeffding inequality, we have

52
Pr > &n(f)] >e| <2exp (— 5 ) . (194)
(t,h)E[—1] X [H] 8(H +1)2(|f = fVIlz,

Let

B
<4H+D[|f = 1Y, - V1og(2/8) +1og N(F,1/T) (195)

1/2
e=(8(H+1)?log (W) lf - fVH23k>

We have, with probability at least 1 — 4, for all f € C(F,1/T),

Yo an)| <A@+ | f = Y|4, - V1os(2/6) +1og N(F,1/T).  (196)

(t,h)€lk—1]x[H]
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We define the above event to be £V, and we condition on this event for the rest of the proof. For
all f € F, there exists g € C(F,1/T), such that || f — g||coc < 1/T, and we have

> Galh)< > Gnlg)|+2H+1)

(t,h)€[k—1]x[H] (t,h)E€[k—1]x[H]
<4H+1) |lg = V| 5, - V1es(2/8) +1og N(F,1/T) + 2(H + 1)

<4(H +1) (||f — Y5, + 1) - \/10g(2/8) +1og N'(F, 1/T) + 2(H + 1).

(197)
Consider V' : § — [0, H] with |[V" — V|| < 1/T. We have
HfV’ - fVHoo <|IV' - V| <1/T. (198)
For any f € F,
2 v |2 v |2
R e

+2 Z (f (St,h/vat,h’) - fV, (St,h’;at,h’)> : (fv, (St,h’a at,h') — Tt,h — Vv’ (St,h'+1)> .
(sth,/,atyh/)GZk
(199)

For the second term, we have,

2 > (f (senvsaem) — 7 (St,h’;at,h’)) : (fvl (8,175 appr) = T — V' (St,h'Jrl))
(St,h’vat,}ﬂ)ezk
> 2 Z (f (St,h’a at,h/) - fv (St,h/7 at,h’)) : (fv (St,h/7 at,h') —Tt,n — V (St,h’+1))
(styh,/,at‘h/)ezk
—AH + 1) [V =V - |2kl
= > G —AH )V =Vl | 2]
(t,h)E[k—1]x[H]
> 4(H +1) (Hf — Y5, + 1) - /10g(2/5) + log N'(F,1/T)
—2(H+1) —4(H+1)- [V' = VIl - | 2]

> _4(H +1) <Hf - fV'HZ + 2) - /108(2/3) + log N'(F, 1/T) — 6(H + 1). (200)
k
/V/ /V/ 2 ’ 2
Recall that f" = argmin ;. » Hf”;v,;- We have Hf ‘ i va ’ oV < 0, which implies,
2 2
Avl V/
> _
0= Hf ’D"lé Hf DY
! 7 2
o AT
Zy
2 > (Festoan) = £ (o)) - (£ Ghoai) = 1 = V' (sis) )
(57007, )€ 2k
! ’7 2
> |7V - g
Zy

CA(H+1) (va’ — v HZ n 2) - V10g(2/8) + log N'(F, 1/T) — 6(H +1).
201)

Solving the above inequality, we have,

HJW’ _ fV/HZk <. (H V1ogd—1 +log N(F, 1/T)) 7 (202)
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for an absolute constant ¢’ > 0.

O
Lemma 18. (Confidence Region). In Algorithm 1, let Fy, , be a confidence region defined as
Fin={f € FIIf = funl%, <B(F.0)}. (203)
Then with probability at least 1 — 6/8, for all k, h € [K] x [H],
r()+ Y P ) Vi (8) € Fin, (204)
s'€S
provided
B(F.5) > ¢ - (H\/log(T]5) + log(W]) + g N'(F. 1/T))". (205)

for some absolute constant ¢ > 0. Here W is given as in Proposition@

Proof. For all (k,h) € [K] x [H], the bonus function by, (-, -) € W. Note that
is a (1/T)-cover of

Qunsr () = {gﬁn {frn1(s) + b (), H} Z i Z . (207)

Le., there exists ¢ € Q such that ||¢ — Qg ny1]|,, < 1/T. This implies

V= {I;leaj(q(-,a) |q € Q} (208)

is a (1/T)-cover of Vi, 41 with log(|V]) < log |W| + log N (F,1/T) + 1. Foreach V € V, let
EV:9/BIVIT) be the event defined in Lemma|17] By Lemma we have Pr [nVev EV"S/(SMT)] >
1 — 6/(8T). We condition on [y, 9/ GVIT) in the rest part of the proof.

Recall that f, 5, is the solution of the optimization problem in Line 8 of Algorithm 1, i.e., fr.n =
argminger || f||%, - Let V € Vsuch that [V — Vi py1l|, < 1/T. Thus, by Lemma 5, we have

frn(so) = (T('a 4D P ) Vi (8'))

s'eS

Zy
< - (H\/1og(T/8) +log N'(F,1/T) + log |[W)) (209)

for some absolute constant ¢’. Therefore, by a union bound, for all (k,h) € [K] x [H], we have
Sien(s) = (r() + X ses P(s" [ +7) Vs (8)) € Fi,n with probability at least 1 — 6/8.

O

The above lemma guarantees that, with high probability, r(-,-) + >, cs P (8" | -,*) Vang1 (-, -) lies
in the confidence region. With this, it is guaranteed that {Qk’h}( b k)€ [ H]x K] A€ all optimistic, with
high probability. This is formally presented in the next lemma.

Lemma 19. With probability at least 1 — 6 /4, for all (k,h) € [K] x [H], forall (s,a) € S X A,

Q7 (s,a) < Qrn(s,a) <r(s,a)+ Z P(s"| s,a) Vipt1 (") + 20,1 (s, a). (210)
s'eS

Proof. Foreach (k,h) € [K]| x [H], define

Fin={F € FIIf = funlll, <BF.0)}. 1
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Let & be the event that for all (k, h) € [K] x [H],r(-,-)+> o cs P (5" | ) Vany1 (8") € Frn- By
Lemma Pr[€] > 1—6/8. Let £ be the event that for all (k, h) € [K]| x [H] and (s,a) € S x A,
be.n(s,a) > w (Fgn, s,a). By Propositionand union bound, £’ holds failure probability at most
/8. In the rest part of the proof we condition on £ and &’.

Note that
Jmax |f(s,a) = fr,n(s,a)] < w(Fin,s,a) < bin(s,a). (212)
Since
r()+ > P | ) Vi (8) € Fion, 213)
€S

for any (s,a) € S x A, we have

r(s,a) + Z P(s"|s,a) Vient1 (s") = frn(s,a)| < bgn(s,a). (214)
s'esS
Hence,
Qr,n(s,a) < frn(s,a) + b n(s,a) <r(s,a) + Z P(s"| s,a) Vint1 (s") + 20,1 (s, a).
s'es
(215)

Now we prove Q7 (s,a) < Qg n(s,a) by induction on h. When h = H + 1, the desired inequality
clearly holds. Now we assume Qj ,(-,-) < Qpns1(-,-) for some h € [H]. Clearly we have
Vi1 (1) < Vi g (). Therefore, for all (s,a) € S x A

Qi(s.a) = r(s,a) + Y P (s [ 5,0) Viiyy ()

s'eS

< min {H,T(S, a) + Z P(s"|s,a) Vins1 (s’)}

s'eS
S min {Ha fk,h(sa Cl) + bk,h(57 (Z)}
= Qr.n(s,a). (216)

The next lemma upper bounds the regret of the algorithm by the sum of by (-, -).
Lemma 20. With probability at least 1 — /2,

K H
Reg(K) <2 > bin (skn, akn) + 4H\/KH -10g(8/9). (217)

k=1h=1
Proof. In our proof, for any (k, h) € [K]| x [H — 1] define

Een = Z P(s"| si,nyann) (Viepsr (1) — Vit (s") = (Vihs1 (Skopg1) — Vit (Sknt1)) 5

s’eS
(218)
and define [Fy, j, as the filtration induced by the sequence
{(shrs @i} oy ep—1yxm Y A Sk10ak1) s (Sk,25an2) - (Skhy arn) b (219)
Then
E [k | Fxp] = 0and [&n] < 2H. (220)
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By Azuma-Hoeffding inequality, with probability at least 1 — §/4,

K H-1
SN €un < 4HKH -log(8/5). 221)
k=1 h=1

We condition on the above event in the rest of the proof. We also condition on the event defined in
Lemma [19 which holds with probability 1 — §/4.

Recall that
K K
Reg(K) =Y (V)" (sk1) (s5,1)) <D Ve (s61) = V™ (sk.1) (222)
k=1 k=1
We have
Reg(K)
K
<> ( sy ak1) + 3 P (s [ sk1,ak1) Vo (8) + 2bk (sk.1, 05.1)
k=1 s'eS
(8k,150k,1) ZPS | Sk,1,ak,1) Va'* (s ))
s'eS
K
=300 P | sk an) (Via () = V3™ () + 2bir (s, an)
k=1s'eS
K
= Z Viea (Sk,2) — Vo* (sk2) + €k + 2bk1 (Sk1,a8,1)
k=1
K
< Z vy (S]pf) — Vi (Slpf) + &1+ €k + 2bk1 (Sk,1,08,1) + 20k 2 (Sk2, Ak 2)
k=1
K H—1 K H
SN Gent+ D> 2bkn (Skonsakn)- (223)
k=1 h=1 k=1h=1
Therefore,

K H
Reg(K) < 2 ZZ ($k.n> ar,n) + 4H /K H -1og(8/9). (224)
1 h=1

O

It remains to bound Y"1 S°1° by, 4 (8k 4, x5, for which we will exploit fact that J has bounded
eluder dimension.

Lemma 21. With probability at least 1 — /4, for any € > 0,

cB(F,0)

2

Z I (br,n Skhaakh)>5)<<

+ H) -dimg(F,e), (225)
k=1h=1

Sor some absolute constant ¢ > 0. Here B(F, ) is as defined in (4).

Proof. Let € be the event that or all (k, h) € [K] x [H],
bk7h(.’ ) <w (?k,ha *y ) ’ (226)

where

Frh = {f EF:|f = funllz, <98+ 12}. (227)
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By Proposition £ holds with probability at least 1 — §/4. In the rest of the proof, we condition on
E.

Let £ = {(skn,ann) | ben (Skn,arn) >e} with |£] = L. We show that there exists
(Sk.hsak,n) € L such that (sgp,akp) is e-dependent on at least L/ dimpg(F,e) — H dis-
joint subsequences in ZpN L. We demonstrate this by using the following procedure. Let
L1,L2, ..., L1/ dimp(F,e)—1 be L/ dimg(F,¢) — 1 disjoint subsequences of £ which are initially
empty. We consider

{(sk,15a,1) 5 (k.20 k,2) - - oy (ks ak,m) } N L, (228)
for each k& € [K] sequentially. For each &k € [K], for each 2z €
{(sk1,aK,1), (Sk2,ak,2) -, (Skpryap,m)NL, wefind j € [L/ dimpg(F, ) — 1] such that z is e-

independent of £; and then add z into £;. By the definition of e-independence, |£;| < dimg(F,¢)
for all j and thus we will eventually find some (sy p, ax,p) € £ such that (sg p,ax,p) is e-dependent

on each of L1, La,..., L1/ dimg(F,e)—1- Among L1, Lo, ..., L1/ dimp(F,c)—1, there are at most
H — 1 of them that contain an element in
{(sk,1:a8,1), (Sk,2,a8,2) - (Sk,H, Ak E) } N L, (229)

and all other subsequences only contain elements in Z;, N L. Therefore, (s p,, ax,5) is e-dependent
on at least L/ dimp(F,e) — H disjoint subsequences in Z;, N L.

On the other hand, since (sy 5, ar,n) € £, we have by 1, (Sk.n, ak.n) > €, which implies there exists
f.f € Fwith |[f = funl%, <98+12and | f' — frnl%, < 98+12suchthat f(2) - f(2) > e.
By triangle inequality, we have ||f — f’||221c < 3653 + 48. On the other hand, since (sg p, ag,p) is
e-dependent on at least L/ dimg (F, e) — H disjoint subsequences in Zj, N L, we have

(L) dimp(F,e) — H)e* < ||f = flZ, <365 +48, (230)
which implies
4
L< (36558 + H) dimp(F,¢). (231)
O

Lastly, we apply the above lemma to bound the overall regret.
Lemma 22. With probability at least 1 — § /4,
K H

SO bk (Skmsakn) < 1+ AH? dimp(F, 1/T) + /e dimp(F,1/T) - T - B(F,4), (232)
k=1 1

Sor some absolute constant ¢ > 0. Here B(F, ) is as defined in (4).

Proof. In the proof we condition on the event defined in Lemma @ We define wy;, =

bi.h (Sk,hs ak,n). Let wi > we > ... > wyp be a permutation of {T,U]“h}(k,h)e[K]X[H]. By the
event defined in Lemma for any w; > 1/T, we have
0 0
t < <6m};’)+H> dimpg (F,w;) < (CM};’)JrH> dimg(F,1/T), (233)
Wi wy
which implies
" —1/2
<|—————-H -/ ). 234
we = (dimE(f, 1/T) ) ¢B(F9) (234)
Moreover, we have w; < 4H. Therefore,
T —1/2
> wy <1+4H?dimp(F,1/T) + > g “\/eB(F,6)
= ’ , dimp(F,1/T) ’
t=1 Hdimg(F,1/T)<t<T
<1+ 4H?*dimg(F,1/T) + 2v/c-dimg(F,1/T) - T - B(F,9). (235)

O
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We are now ready to prove our main theorem.

Proof of Theorem 1. By Lemma[20]and Lemma[22] with probability at least 1 — 4,
Reg(K)

K H
< min {KH, D> i (skny arn) +4H/KH -log(8 /5)} (236)

k=1h=1

< ¢-min {KH (dimE(]—', T) - H? + \/dimp(F, 1JT) - T - B(F,0) + H\/KH -log 5—1)} ,
(237)
for some absolute constants ¢ > 0. Substituting the value of S(F, §) completes the proof.

E IDEA: WEIGHT

In this section, we repeat the key results in|He et al.|(2022) that are useful for our derivation.
Lemma 23. For any 0 < ¢ < 1 and corruption budget C > 0, set the confidence radius § =

R\/dlog (1 + KL2/\) /§) + VAS + aC in Algorithm 1, then with probability at least 1 — 6, for
every round k, the estimator 0y, satisfies that |0y, — 6*||5, < .

Lemma 24. For any 0 < § < 1 and corruption budget C > 0, set the confidence radius [ in
Algorithm 1 as follows:

B = Ry/dlog (1 + KL?/)) /6) + aC + VAS. (238)
Then with probability at least 1 — 0, its regret in the first K rounds is upper bounded by

Regret(K) = O (dR\/K log? (1 + KL?/X) /0) + aCy/dK log? (1 + KL2/X) /) (239)

Rd1.5
X

«

+ S\/d\K log (1 4+ KL2/\) + \/ log® (1 + KL2/)) /6) (240)

+dsf x \/log? (1 + KL2/) /6) + dC\/1og? (1 + KL2/) /5)) 41
In addition, if choosing o = (R\/d++/\S)/C and X\ = R?/S?, its regret can be upper bounded by
Regret(K) = O(dVK + dC). (242)

E.1 PROOF OF LEMMA 23]

Proof. According to the definition of estimated vector 6, in Algorithm 1 (Line 3), we have
k—1 k-1
Gk = Elzlbk = lel Z wWX;r; = 2;1 Z W;X; (X;ro +n + Ci) . (243)
i=1 i=1
This equation further implies that the difference between estimated vector 8, and the unknown
vector 6* can be decomposed as:

k—1
* —1 § T
HBk—O ||Ek = Ek wW;X; (Xi 9*+771+CL) -0
1=1 pI%
k—1 k—1
—1 T -1 T
= (|3, E WiX; (xi 0" +n; + ci) -3 E w;ix;x; +AI) 6"
i=1 =1 pI7A
k—1 k—1
- 2,;1§ WX, +2,;1§ wixic; — A\, 10”
i=1 i=1 =5
k—1 k—1
—1 -1 —1
< Ek E W;XiM; + Ek E W;X;Ci + H)\Ek o s, (244)
=1 >k =1 >k
Regularization error: I3
Stochastic error: I Corruption error: o
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where the inequality holds due to the fact that ||la + b + ¢||s, < ||alls, + [|P[1Zk + ||| Z«.

For the stochastic error term [, it can be bounded by the concentration Lemma H. 2 in AbbasiYad-
kori et al. (2011). More specifically, we introduce the auxiliary vector x; and noise 7} such that
X, = Jw;x; and 0, = \/w;n;. According to the definition of weight 6;, both of these two situa-
tions satisfies that the weight 6, is bounded by w; < 1. Since the original vector x; satisfies that
|Ix;|l, < L and the original stochastic noise 7; is R-sub Gaussian, these results further imply that

i1y = Vwixilly, < L,n; = JwiniisR — subGaussian. (245)

With this notation, the covariance matrix X; and the stochastic error term /; can be rewritten and
bounded as:

k—1 k—1
e =AY wixix] =M+ Y x)(x)) (246)
=1 =1
k—1
=1 pI%
k—1
=D wixin; (248)
i=1 2;1
k—1
= > xin; (249)
i=1 )3;1
1/2 —1/2
< . |2R?log (det () ?et (%) ) (250)
< Ry/dlog ((1+ KL2/)) /6), (251)

where the first inequality holds due to Lemma H. 2 and the second inequality holds due to the facts
that 3, = AL, Y0 x! (x)) " and ||¥]|, < L.

7

For the corruption error term I, it can be bounded by
k-1
-1
3 k Z W;X;C4
i=1

k—1

—1/2

Ek/ E W;X;C;
i=1

Iy =

i

2

IN

k—1

—-1/2
E sz W;X;C; )
i=1

k—1

= Z lei] x w;
i=1
k—1

<D leila
i=1

<aC, (252)

where the first inequality holds due to the fact that ||a + bl|z < ||a||2 + ||b]|2. the second inequality
holds due to the definition of weight w; in Algorithm (Line 6) with the fact that 35 > 3J; and the
last inequality holds due to the definition of corruption level C'

E;lﬂxi

For the regularization error term I3, we have

Is = [|A210% ||, = A16°[I5-1 < VA[6]], < VAS, (253)
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where the first inequality holds due to [|0*|5, < [|0"(l; /\/Amin (¥k) with the fact that 3 =
AL+ Zf;ll w;x;x; = Al and the last inequality holds due to the assumption that ||0* ||, < S.

Finally, we have
16x — 0|5y, < I+ Lo + I3 < Ry/dlog (1+ KL?/)) /6) + aC + VAS.  (254)
Therefore, we finish the proof of Lemma 23]

O
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